

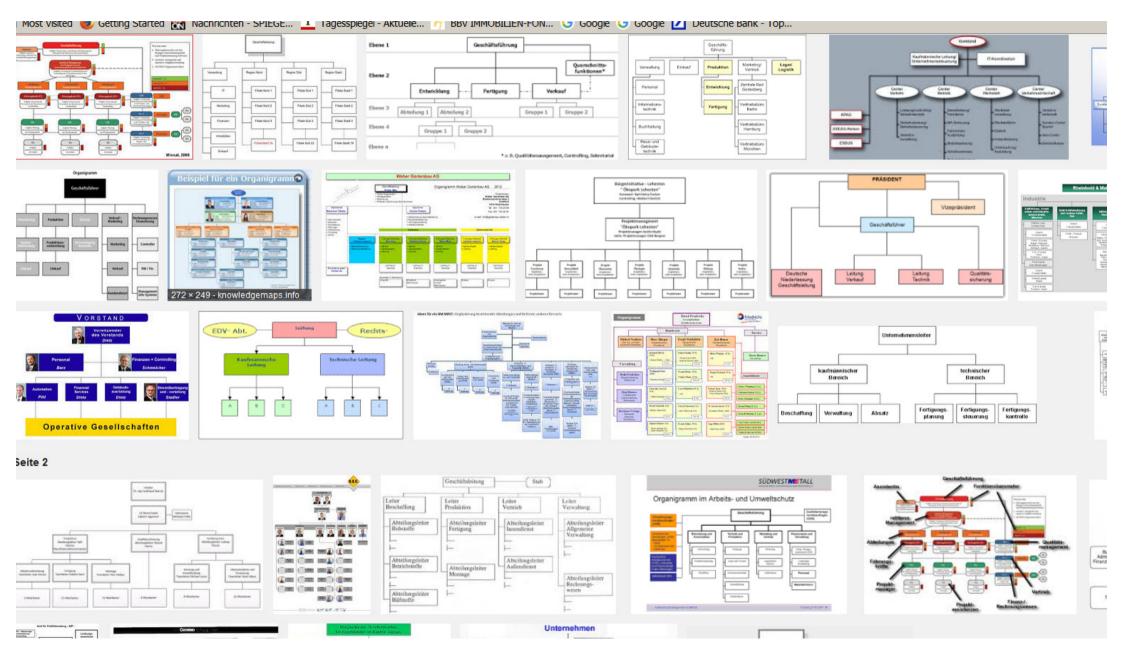
Prof. Dr.- Ing. Werner Zorn Hasso- Plattner- Institut an der Universität Potsdam

Über die Schwierigkeit mit Hierarchien

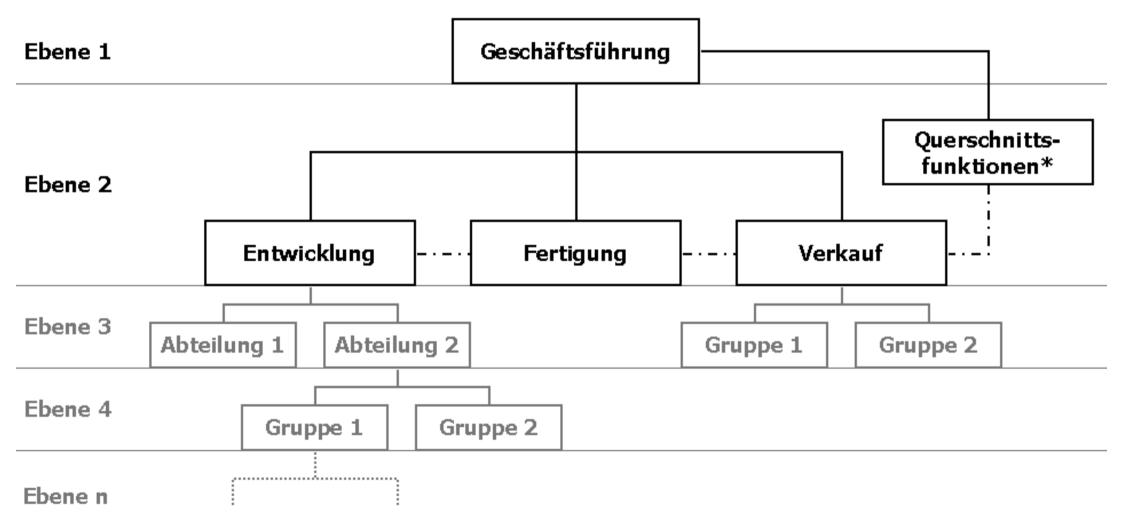
Vortrag im Rahmen des Kolloqiums

Theoria cum praxi et commune bonum

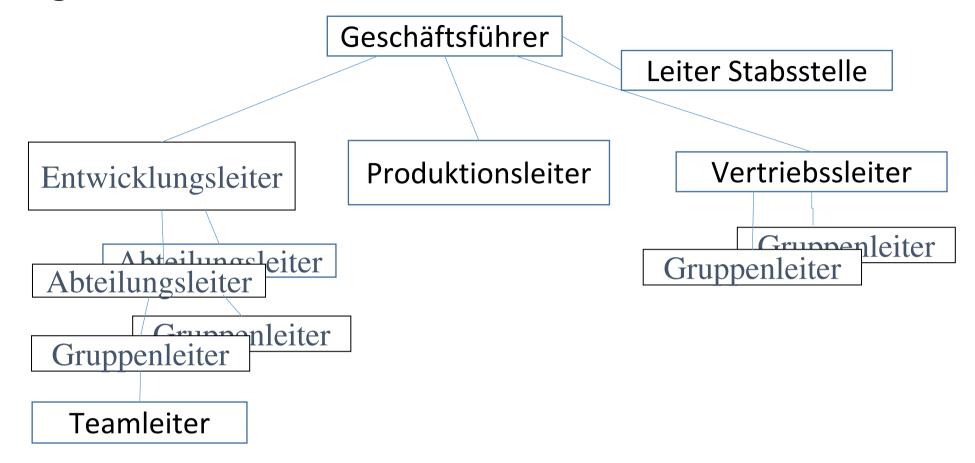
"Emergente Systeme, Information und Gesellschaft"


der Leibniz- Sozietät in Berlin

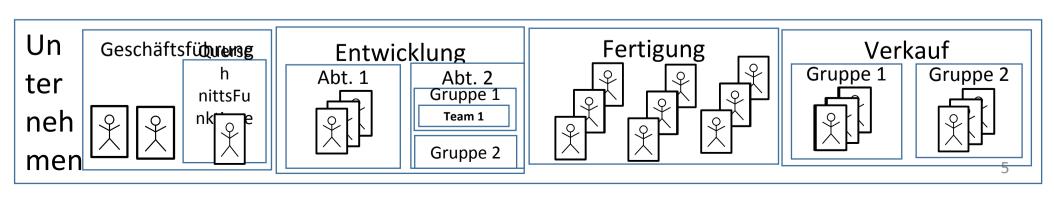
10. Dezember 2015


1. Einleitung

2. Organigramme

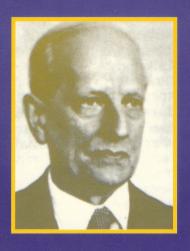


Beispiel-Organigramm



* z. B. Qualitätsmanagement, Controlling, Sekretariat

Vorgesetzten-Hierarchie



Enthaltenseins-Hierarchie (=Begriffshierarchie Akteurs-berandeter Abstraktionen)

Wolfgang Harich

Nicolai Hartmann Leben, Werk, Wirkung

Herausgegeben von Martin Morgenstern

Königshausen & Neumann

(1882 - 1950)

3. Exkurs in die Philosphie

Nicolai Hartmann "Der Aufbau der realen Welt" Berlin, 1939

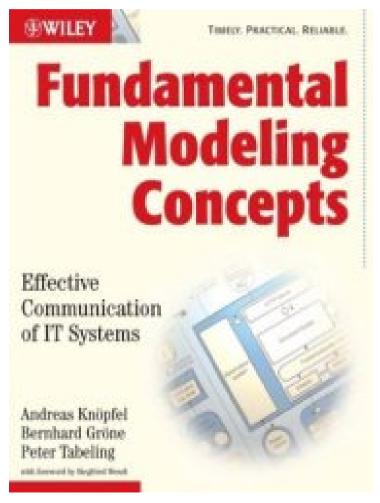
Die 12 Gegensatzpaare:

- 1. Prinzip Concretum
- 2. Struktur Modus
- 3. Form Materie
- 4. Inneres Äusseres
- 5. Determination Dependenz
- 6. Qualität Quantität
- 7. Einheit Mannigfaltigkeit
- 8. Einstimmigkeit Widerstreit
- 9. Gegensatz Dimension
- 10. Diskretion Kontinuität
- 11. Substrat Relation
- 12. Element Gefüge

Stammbaum

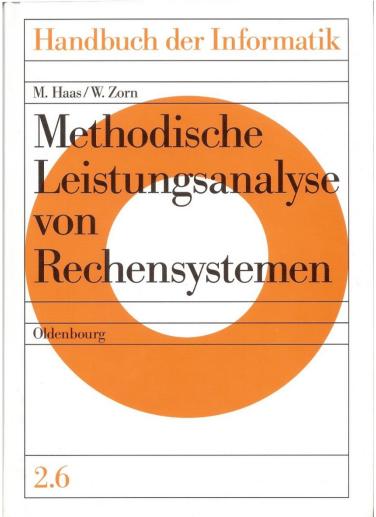
Gegensatzpaar 1. Prinzip – Concretum

Gegensatzpaar 12. Element – Gefüge

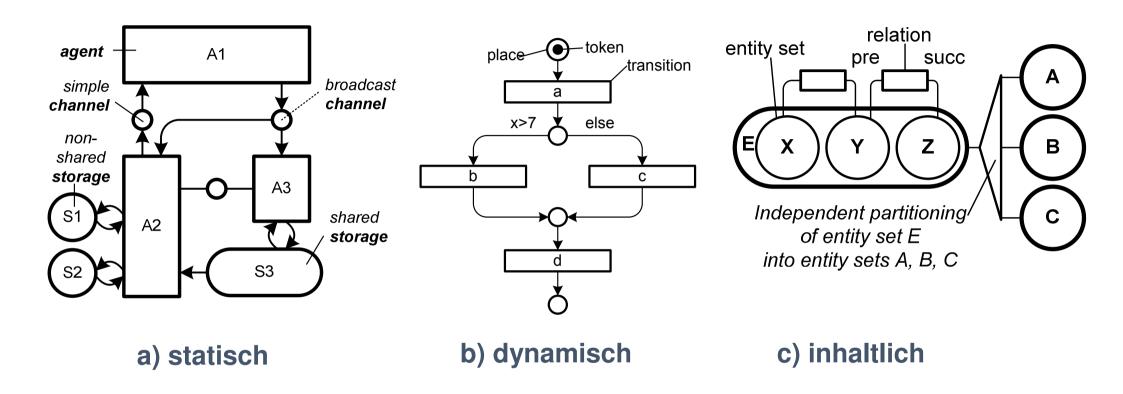

"real" "gedacht" reale Welt menschliche [materiell/ Vorstellungswelt energetisch] [Informationell] "konkret" **Modellhierarchie** Aufbauhierarchie **Aufrufhierarchie** "Prinzip" (statisch) /Ablaufhierarchie **System** - grobes Modells (1) (dynamisch) ("Gefüge") - verfeinertes Modells (1.1) Zusammen-Individuum Verfeinerung fügen des Modells - verfeinertes Modells (1.1.1) VS. Zerlegen Konkretisierung **Baugruppe** - verfeinertes Modells (1.1.1....1) **Bauelement** fertigen ("Element") = "fertigbar" "konkret" "konkret" "Baueinheit" "Funktionsenheit"

Siegfried Wendt

4. Hierachien in zustandsdiskreten Systemen


strukturell

&


(2003 - 2007)

quantitativ

(1986 – 1995) 8⁸

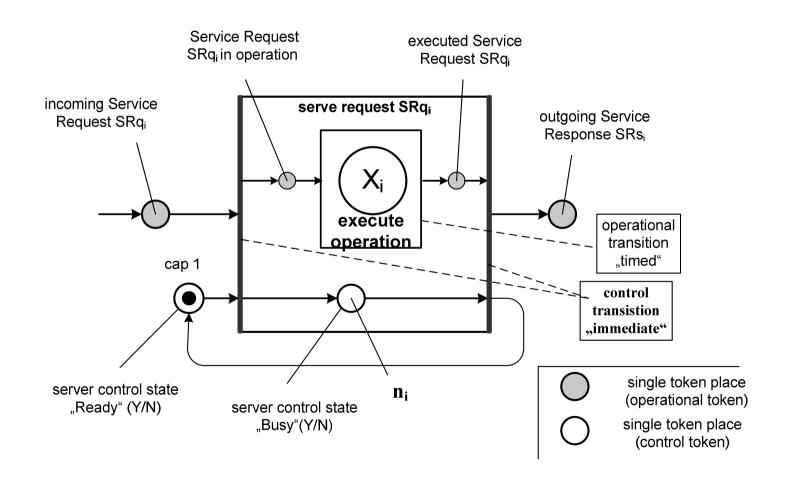
4.1 FMC-Grundstrukturen

Dimensionen: Gegensatzpaare in bipartiten Graphen:

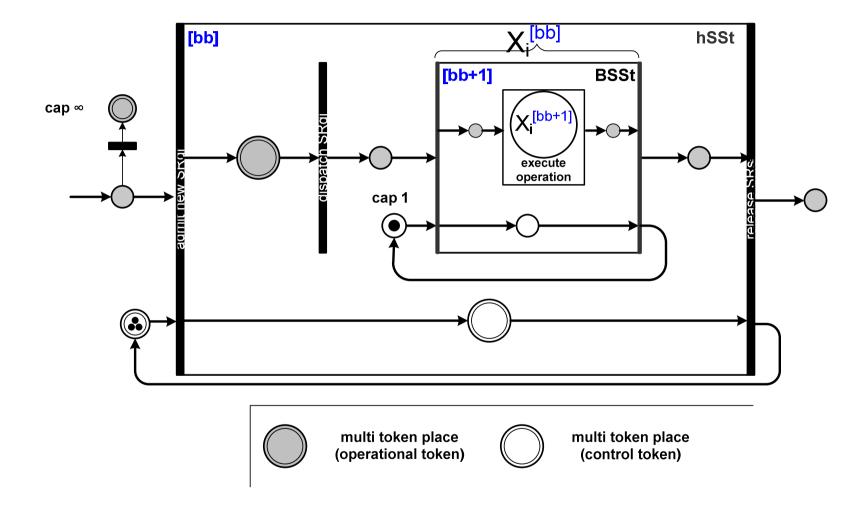
- Aufbau

- Ablauf

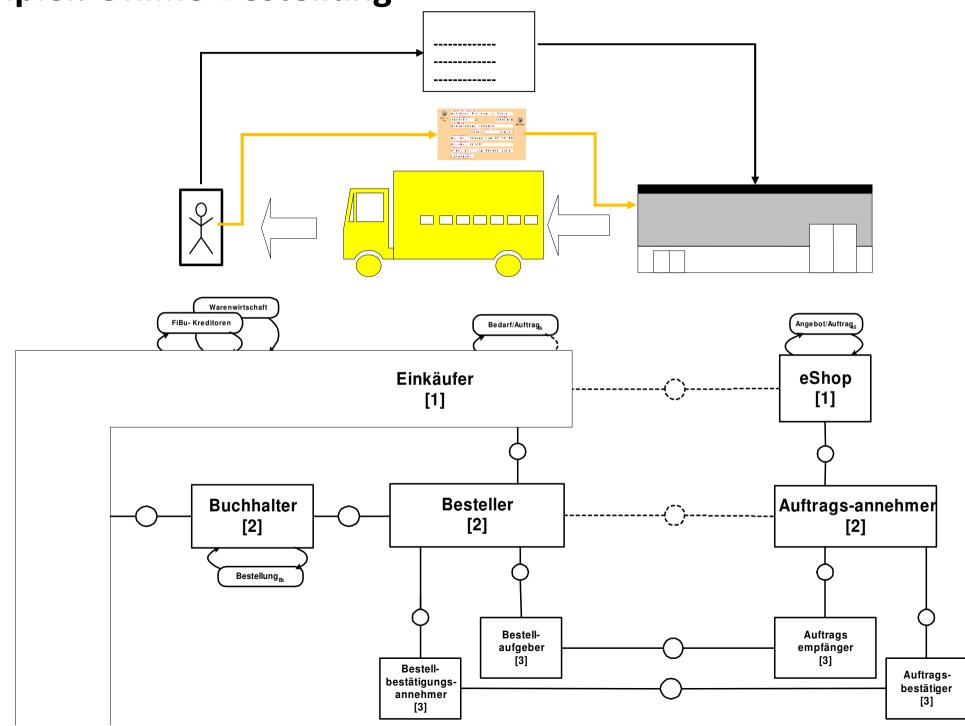
zu a) Instanzen – Kanäle/*"Element-Gefüge"*

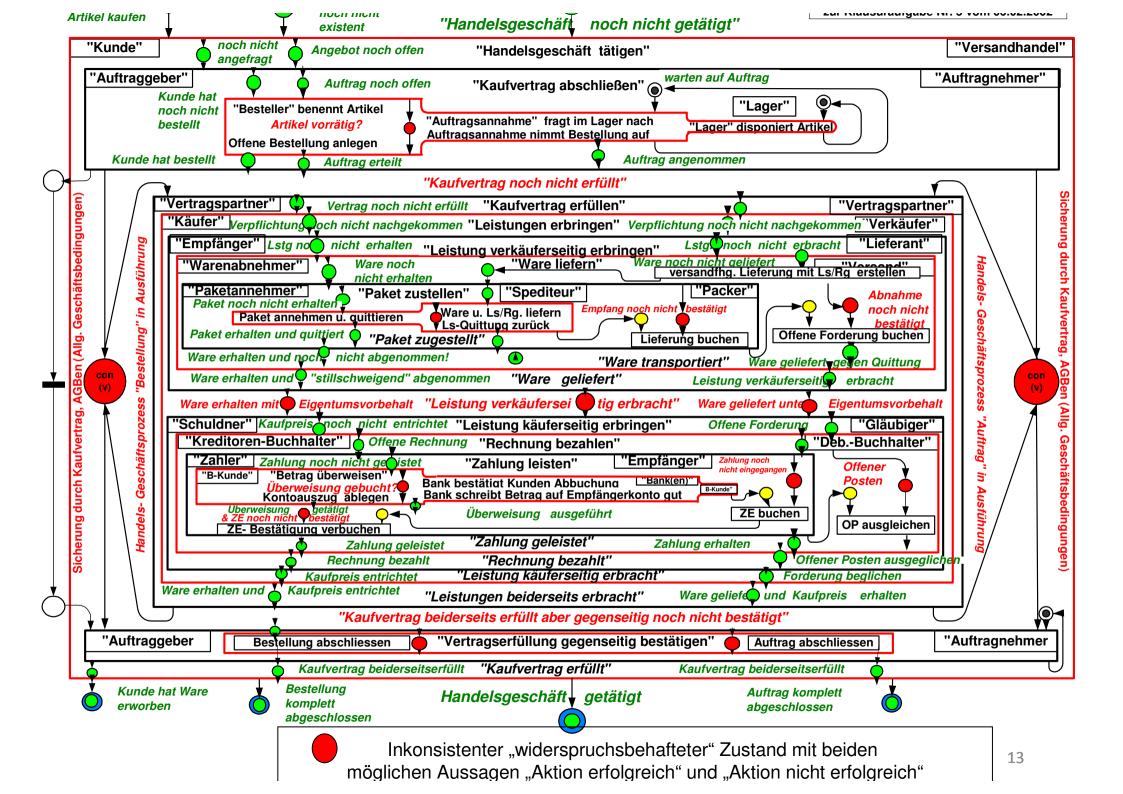

zu b) Stellen – Transitionen/"Einheit-Mannigfaltigkeit"

- Beziehungen


zu c) Entitäten – Relationen/"Substrat-Relation"

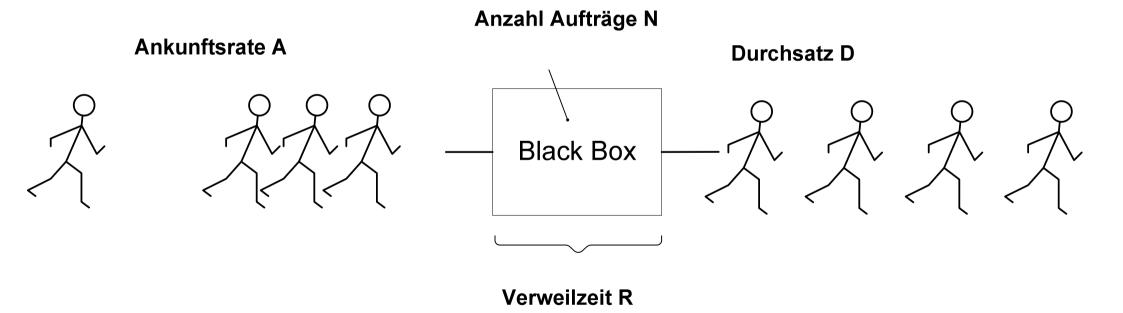
4.2 FMC-eCS: Modellierung dynamischer Hierarchien


Grundstruktur: kontrollierte Transition

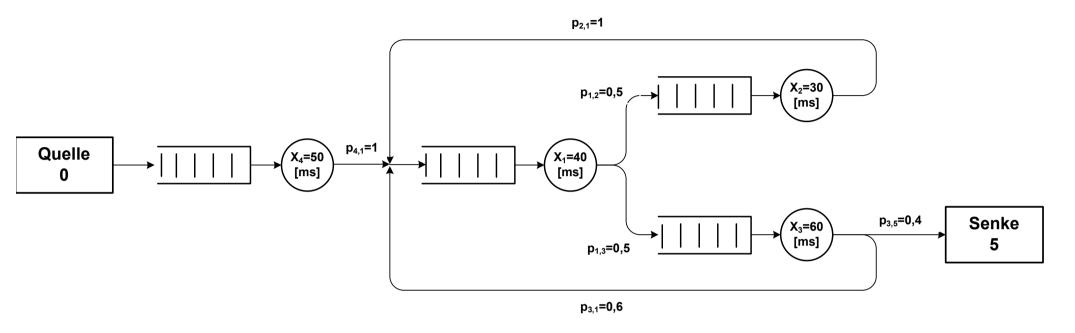


hierarchische Struktur: eingebettete kontrollierte Transition

Beipiel: Online-Bestellung


4.3 Quantitative Modellierung

Ankunftsrate A = {A} [Aufträge/Zeit]


Aufträge N = {N} [Aufträge]

Verweilzeit R = {R} [Zeit]

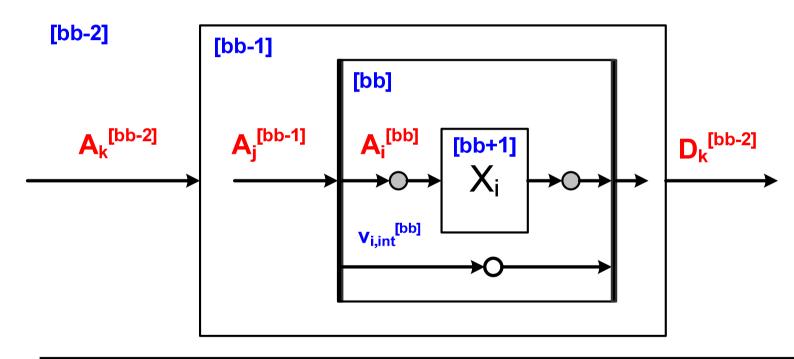
Little's Law: N = R A

Warteschlangennetz

Geg.: λ_o , $p_{i,j}$, $\mu_i = X_i$ Ges.: R, N, and λ_i , ρ_i , ni Lösung des Gleichungssystems: $\lambda = \lambda$ [p]

$$N = (1 - \rho) \Sigma n \rho^n$$
 mit $\rho = \lambda/\mu$ für $n = 0 ... \infty = ... = \rho/(1 - \rho) = \lambda/(\mu - \lambda)$

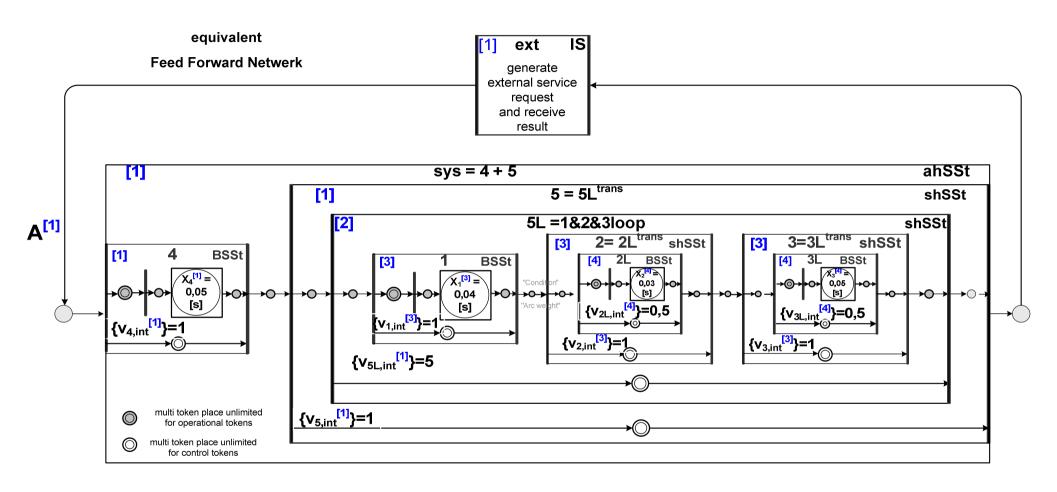
DRITTES KAPITEL


Zu Bremen lebt gewandt und still Als ein Friseur der Meister Krüll, Und jedermann in dieser Stadt, Wer Haare und wer keine hat, Geht gern zu Meister Krüll ins Haus Und kommt als netter Mensch beraus

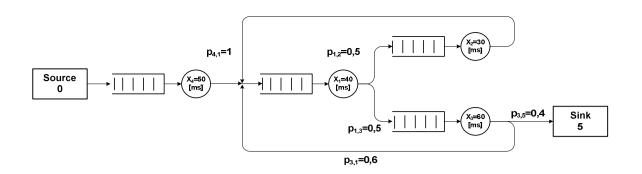
FMC-QE: quantitative Modellierung hierarchischer Auftragsflüsse

$$N_i^{[bb]} = \{N_i^{[bb]}\}[N_i^{[bb]}]$$

Verkehrsflussgesetz:


$$A_i = v_i A$$

$$v_i^{[bb]} = \{v_i^{[bb]}\}[v_i^{[bb]}] = \{v_i^{[bb]}\}[N_i^{e_i^{[bb]}}]/[N_j^{e_i^{[bb-1]}}]$$


$$A_i^{[bb]} = V_{i,j}^{[bb]} A_j^{[bb-1]}$$

zum WS-Netz äquivalentes FMC-QE Netzwerk ("4H")

Engpass- Definition ("von Innen nach Au	ıssen"):			
$D_{max}^{QN[bb-1]} = min (D_{i,max}^{St[bb]}) = min(m_i/(v_i^{[b]}))$	$^{b]}X_{i})) = min (B_{i}/v_{i}^{[bb]})$			
QN - Queueing Network (beliebig)				
St - Server Type: SS- Single Server, P	S- Parallel Server (auss	er IS- Infinite	Server)	
mit $v_i^{[bb]} = v_{ext}^{[0]} \prod v_{i,int}^{[b]}$ (für b= 1 bis bb-	l <u>≥</u> 1)			
aus Verkehrsflußgesetz ("von Aussen i	nach Innen"):			
$A_i^{[bb]} = v_i^{[bb]} A_i^{[bb-1]} = \Pi v_i^{[b]} A (für b= 0 bis)$	bb-1)			

Feed Forward Transformation $\{v_{1\&1\&3}\} = 1/(1-p_{ret})$ = 1/(1-0,8) = 5

Global Parameter Section $N_{total}^{[0]} \qquad 7$ $Amax^{[1]} = min(Bi,_{max}) \qquad 5,0$ $A^{[1]} = f^*Amax = \qquad 4,0$ $1 \ge f = \qquad 0,8$ $p_{ret} \qquad 0,8$ $v_{sys\ intern} = 1/(1-p_{ret}) \qquad 5$

hierarchisches Tableau It. FMC-QE Kalkül

Given:

$$\lambda_{\rm ext} = 4 [1/s]$$

$$\underline{\mathbf{\mu}} = (25; 33,33; 16,67; 20) [1/s]$$

Solution of the flow balance equation sys

$$\underline{\lambda} = \underline{\lambda} \mathbf{P}$$

delivers:

$$\lambda = (20;10;10;4)$$
 [1/s]

$$\varrho = (0.8; 0.3; 0.6; 0.2)$$

$$n = (4; 0,429; 1,5; 0,25)$$

$$R = (0.2; 0.043; 0.15; 0.0625)$$
 [s]

$$N_{\text{sys}} = 6,179; R_{\text{sys}} = 1,545 \text{ [s]}$$

Commo Service Request Section Server Section											Dynamic Evaluation Section											
I	eve	RQ unit					Server cate	egory					H: B _i ^[bb]	in(B _i /v _i)	V _i [DD]*	A_i/B_i	$U\rho_i$	J _i ²/(1-U	n _{i,q} +n _{i,s}	$_{s}N_{i,q}/A_{i}$	$N_{i,s}/A_i$	N_i/A_i
i	[bb]	$[N_i^e]$	pi	V _{i,ex}	$\mathbf{v}_{\text{i,int}}$	Vi	name	kind	X_{i}	m _{i,ext}	$m_{i,int}$	m_{i}	$B_i = mi/($	B _{max} =	A _i [bb]=	$U_i =$	n _{i,s} =	$n_{i,q} =$	n _i =	$W_{i} =$	$X_i =$	R _i =
							-						-	Bottle				M/M/1				
2	3	[IO 1]	0,5	5	0,5	2,5	Disk 1	В	0,03	1	1	1	33,3	13,3	10,0	0,30	0,30	0,13	0,43	0,01	0,030	0,043
2a	2	[IO 1'	0,5	5	1	5	Disk 1'	sH		1	1	1	66,7	13,3	20,0	0,30	0,30	0,13	0,43	0,01	0,015	0,02
3	3	[IO 2]	0,5	5	0,5	2,5	Disk 2'	В	0,06	1	1	1	16,7	6,7	10,0	0,60	0,60	0,90	1,50	0,09	0,060	0,15
3a	2	[IO 2'	0,5	5	1	5	Disk 2'	sH		1	1	1	33,3	6,7	20,0	0,60	0,60	0,90	1,50	0,05	0,030	0,07
1	2	[Com	1	5	1	5	CPU	В	0,04	1	1	1	25,0	5,0	20,0	0,80	0,80	3,20	4,00	0,16	0,040	0,20
&2	1	[Calc	1	1	5	5	Computer	sH		1	1	1	25,0	5,0	20,0	0,80	1,70	4,23	5,93	0,21	0,085	0,29
4	1	[init]	1	1	1	1	Starter	В	0,05	1	1	1	20,0	20,0	4,0	0,20	0,20	0,05	0,25	0,01	0,050	0,06
ys	1	[exec	1	1	1	1	PC	аН		1	1	1	5,0	5,0	4,0	0,80	1,90	4,28	6,179	1,07	0,475	1,54
xt.	1	[do Jo	1	1	1	1	User	IS *)	0,21	1	0,82	1	4,0	4,0	4,0	1,00	0,82	0,00	0,82	0,00	0,205	0,20
ni		[let de		1	1	1	Third Party	аН		1	1	1	4,0	4,0	4,0	1,00	2,72	4,28	7,00	1,07	0,680	1,75

) IS Server is never Bottleneck N=A*R = 7,0 Chec

Über die Schwierigkeit mit Hierarchien

Resümee