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Bemerkungen zu „Moon Theory, Tidal Dynamics, and Earthquake Statistics“ 

 
In der ersten Hälfte der neuen Arbeit werden die für die Erdbebenstudien wichtigen Grundlagen der 
Mondtheorie entwickelt. Die beiden großen Anomalien Evektion und Variation in der Bewegung des 
Mondes spielen eine zentrale Rolle. 

In Abschnitt 2, Historic Miscellany, berichten wir über die Entdeckungsgeschichte der Anomalien. 
Johannes Kepler schreibt in seiner Astronomia Nova: „Tycho Brahe bemerkte aus Beobachtungen am 
Mond, die er lange Zeit hindurch sehr häufig bei jeder Stellung zur Sonne ausgeführt hatte, daß beim 
Mond … die Bewegung … in der Nähe der Konjunktionen und Oppositionen schneller wird.“ Auf Seite 
4 der vorliegenden Arbeit findet man den entsprechenden Abschnitt aus Keplers Astronomia Nova. 
Es ist interessant, aus Keplers Fig. 34 (= Figure 1 auf S. 5) Tychos Beobachtung über die schnellere 
Bewegung in der Nähe der Oppositionen abzulesen. 

Hipparchos ist der Entdecker der Evektion. Zu seiner Zeit wurde die lunare Bewegung nur in der 
Nähe der Voll- und Neumondstellungen beobachtet, die Variationsungleichheit wurde nicht gesehen. 
Es ist interessant, dass die Evektion einen statistisch signifikanten Einfluss auf die Verteilung der Erd-
beben hat; siehe Christoph Gackstatters Beitrag auf den Seiten 800-804 in [11]. 

In Abschnitt 3 bestimmen wir die Fourierdarstellung der Bahn des Mondes auf der zweiten Nähe-
rungsstufe – elliptische Ungleichheit, Evektion und Variation werden berücksichtigt. Wir übersetzen 
die Parallaxen-Formel in [17, I, S. 161] in eine 1/km-Formel. 

In Abschnitt 4 werden die Monate, Jahre und Mondzyklen intensiv studiert, der evektionale  
Monat𝑈𝑒𝑣𝑒und der evektionale Zyklus𝑈𝑒treten in Erscheinung. 

Mit Abschnitt 5 kommen wir zur zweiten Hälfte der neuen Arbeit. Da die Frequenzen der ellipti-
schen Ungleichheit und der Evektion sich wenig unterscheiden entsteht eine Schwebungsinterferenz 
mit der langen Periode 𝑈𝑒 = 411,8 Tage. Da die Gezeitenkräfte umgekehrt proportional zur dritten 
Potenz des lunaren Abstandes sind, erwarten wir in den zeitlichen Bereichen mit den hohen 
Amplituden der Schwebungsoszillationen eine stärkere seismische Aktivität als in den Bereichen mit 
den kleinen Amplituden. Diese Vermutung wird bestätigt: 1. Siehe Tabelle 5 in Abschnitt 5.5. 2. Siehe 
das Ergebnis von Christoph Gackstatter über den signifikanten evektionalen Einfluss auf die Vertei-
lung der Erdbeben. 

Die drei stärksten Erdbeben im neuen Millennium – Indonesien mit Magnitude 9.1, Chile mit 8.8 
und Japan mit 9.0 – fallen in die an die vier extremen Springfluten („maximum“ und „extreme 
proxigean spring tides“ nach Fergus J. Wood) angrenzenden synodischen Monate. In Abschnitt 5.6 
geben wir eine physikalische Erklärung für die starken Beben: extreme Schwankungen in der Torsion 
des Erdellipsoids sind der Auslöser. 

In Abschnitt 7 stellen wir die von Christoph Gackstatter entwickelten statistischen Methoden vor. 
Der synodische Monat 2016/10/16 – 2016/11/14 ist die nächste kritische Periode; siehe Tabelle 6. 

Es besteht die Hoffnung, dass man durch das „Disaster Alert Mediation using Nature (DAMN)“ Pro-
gramm der Biologen kritische Regionen eingrenzen kann; siehe Abschnitt 8.2.     

 
Fritz Gackstatter 
23. September 2015 
 
 

http://www.leibnizsozietaet.de/wp-content/uploads/2015/10/gackstatter.pdf   
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Bemerkungen zum starken 2015/09/16 Erdbeben in Chile 
 
Das starke Erdbeben in Chile mit der Magnitude 8.3 ordnet sich in unser System ein: 
 
2015/08/29       F       61' 4.8'' 
2015/09/16                                                            8.3       Chile 
2015/09/28       F       61' 26.5''       proxigean 
2015/10/27       F       61' 1.3''   
 
Siehe die ersten beiden Seiten von Woods Tafel 16a in [19]. Wenn wir zusätzlich die „proxigean 
spring tides“ (siehe Table 4 auf S. 24) heranziehen, dann sehen wir die „proxigean tide“ am 28. Sep-
tember 2015. Zwölf Tage zuvor, am 16. September, wurde das große Beben in Chile ausgelöst. 
 

 

Adresse des Verfassers:  

Prof. Dr. Fritz Gackstatter 
Ihnestr. 80 
14195 Berlin 
e-mail: fgackstatter@gmx.de 
 

mailto:fgackstatter@gmx.de


Moon Theory, Tidal Dynamics, and Earthquake

Statistics

Fritz Gackstatter
Freie Universität Berlin

September 26, 2015

Abstract

In Fergus J. Wood’s grand opus on Tidal Dynamics [17] lunisolar
ephemerides over the period 1600 – 2164 are compiled. In the new millen-
nium four extreme proxigean spring tides happened up to now. Surpris-
ingly, the three strongest earthquakes – the 2004 Indonesia Quake with
magnitude 9.1, the 2010 Chile Quake with 8.8 and the 2011 Japan Quake
with 9.0 – are related to these extreme tides; see [11]. So it is a natural
idea to study the lunisolar effect on the trigger of earthquakes.

In Section 3 of the present treatise we develop a second level approxi-
mation for the orbit of the Moon which takes the main anomalies evection
and variation into consideration. Since the frequencies of elliptic inequal-
ity and evection anomaly are only slightly different a beat interference
with the long period Ue = 411.8 days appears. Ue is the evectional cycle.
In Section 4 a collection of periods and cycles is presented and period rela-
tions are proved. In Figure 5 in Section 5 one can see the beat oscillation
of the lunar distance function. We discover a physical argument for the
lunisolar influence: In the high amplitude periods of the beat oscillation
the seismic activity is above average because tide-raising force varies in-
versely as the third power of the lunar distance. Finally, in Section 7, we
present a result of Christoph Gackstatter developed in [11, p. 800-804]:
The lunar evection anomaly – discovered by Hipparcos and installed in
Ptolemy’s epicycle theory – has a statistically significant influence on the
earthquake distribution.

The short survey article [19] with the title Lunisolarer Einfluss auf die
Entstehung von Erdbeben was published recently.
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1 Introduction

In the present treatise we aim to study the lunisolar effect on the trigger of
earthquakes. For this reason some basic facts on the moon theory must be
compiled. A beat oscillation of the lunar distance function, generated by elliptic
inequality and evection anomaly, has an influence on the seismic activity. We
are glad that we can use Fergus J. Wood’s grand opus on Tidal Dynamics [17]
together with the Significant Earthquake Archive of USGS [18].

1.1 The second level approximation for the orbit of the
Moon

In order to find a suitable approximation formula for the lunar orbit we orientate
according to Kepler’s First Law: The orbits of the planets are ellipses. The First
Law is a relation on spatial coordinates,

ρ =
1

r
=

1

p
{1 + e cosϕ}, (IK)

where time t is eliminated; the Second Law takes up time again. (ρ = 1
r , ϕ) are

polar coordinates with reciprocal radius in the inertial or siderial plane with the
Sun in the centre. The separation of space and time is the central idea.

Following the central idea, we look for a law on spatial coordinates describ-
ing the lunar orbit. Considering the elliptic inequality as well as the evection
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and variation anomaly we find the desired result:

In Euler’s synodic plane with the Earth in the centre the following second level
approximation for the orbit of the Moon is valid:

ρ =
1

r
=

1

p
{1 + e cos(

Usyn
Uano

ϕ) + f cos(
Usyn
Ueve

ϕ) + g cos(2ϕ)}, (I)

where

Usyn = 29.530 59 days, Uano = 27.554 55 days, Ueve = 31.811 94 days (Ia)

are the synodic, anomalistic, and evectional month and

e = 0.0545, f = 0.0100, g = 0.0082 (Ib)

the parameters of elliptic inequality as well as evection and variation anomaly.
p = 384, 397 km is the mean lunar distance.

(ρ = 1
r , ϕ) are polar coordinates in Euler’s rotating or synodic plane with the

Earth in the centre. In Table 2 in Section 4.1 one can find a collection of periods
and their numerical values. Because of e, f, g > 0 in (I) the lunar distance is
minimal in the direction ϕ = 0 of the full moon. Since perigee and full moon
do not coincide in real nature a problem arises. Fortunately we can handle the
problem with Fergus J. Wood’s tidal tables where we can find dates with small
perigee-syzygy separation. For example, on January 4, 1912, the difference
between full moon and perigee only amounts to six time minutes. In Section 3
we will develop formula (I) and discuss the initial date problem.

If we neglect the big anomalies evection and variation (f = g = 0 in (I)) the
first approximation level remains, if we aim at a higher level, further Fourier
terms must be worked into (I).

From the second level approximation (I) we can read a beat oscillation of
the lunar distance function which has an effect on the trigger of earthquakes.
These facts will be studied in Section 5.

1.2 The lunisolar effect on the trigger of earthquakes

When the Moon is full or new, the gravitational pull of the Moon and Sun are
combined and spring tides are the consequence. High spring tides occur when
the Moon is close to the Earth on its elliptical path because tide-raising force
varies inversely as the third power of the lunar distance. A beat oscillation of the
lunar distance function, generated by elliptic inequlity and evection anomaly in
(I), result in corresponding swaying of the tide-raising forces. So one can expect
that in the high amplitude periods of the beat oscillation the seismic activity is
above average. This conjecture is proved true:

1. In the new millennium four extreme proxigean spring tides happened up
to now, and the big 8.8+ earthquakes occured in adjoining synodic months:
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the 2004 Indonesia Quake with magnitude 9.1, the 2010 Chile Quake with 8.8,
and the 2011 Japan Quake with 9.0. In Section 5 we present Fergus Wood’s
definition of an extreme proxigean tide.

2. In 2010 Christoph Gackstatter made a complete statistical test for the
entirety of measured quakes. More than 650,000 earthquakes and 13,860 obser-
vations, which is the total number of days in the database, are used for the linear
regression; see [11, p. 800-804]. With the small 1.83% p-value a fundamental
result is proved: The lunar evection anomaly, discovered by Hipparcos
and installed in Ptolemy’s epicycle theory, has a statistically signifi-
cant influence on the earthquake distribution.

Influences the Moon the creation of earthquakes? This question was dis-
cussed controversial in the past. Now we have the statistically significant result
that the evectional beat oscillation of the lunar distance function has an in-
fluence on the earthquake distribution. In our computer epoch statistics can
handle huge observation data. In Section 7 we present further details.

2 Historic miscellany

Hipparcos (∼ 180 – 125 BC), one of the greatest astronomers of the classic
antiquity, is the discoverer of the evection anomaly. Because of Usyn = 29.5 days
and Ueve = 31.8 days the evectional disturbance of the mean longitudinal motion
sometimes appears close by the syzygys, sometimes it is not much in evidence
there. This inequality in the motion of the Moon was detected by Hipparcos.
Ptolemy (∼ 90 – 160) pays attention to the anomaly when creating his epicycle
theory. For further details see K. Stumpff’s grand opus on Celestial Mechanics
[15, I, p. 34].

In 1590 Tycho Brahe discovered the variation anomaly. Because of the
variation period 1

2Usyn no inequality in the motion of the Moon can be seen in
syzygy directions. Paying attention to all lunar positions relative to the Sun
the grand observer Tycho detected the anomaly: the motion becomes quicker
close by the oppositions and conjunctions and slower at the quadrature points.
This new oscillation, now designated as variation anomaly, stands on a level
with elliptic inequality and evection anomaly. Johannes Kepler reports on
Tycho’s discovery in his opus Astronomia Nova [1, AN, p. 252]:

Animadvertit TYCHO BRAHEVS per diutinas et creberrimas observationes Lu-
nae in omni situ cum Sole, quod in Luna praeter anomaliam epicycli, et praeter
illam anomaliam menstruam, quae etiam PTOLEMAEO nota fuit, ipse etiam
medius motus nondum sit plane medius, sed intendatur sub conjunctiones et
oppositiones cum Sole, remittatur in quadraturis.

There is a German translation of the Astronomia Nova by M. Caspar and
an English translation by W.H. Donahue; see entry [1] in the References.
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Figure 1: Kepler’s graph of Tycho’s observation

In Fig. 34 in [1, AN] Kepler presents a graph of the lunar orbit where the
variation anomaly can be recognized. We adopt Kepler’s graph in Figure 1.

In Figure 1 we see a small circle with opposition point O, conjunktion point
C, and the quadrature points L and F. This circle is the orbit of the Moon in
a synodic sense and can be compared with the lunar orbit in the synodic box
in Figure 3 in Section 3.2. The punctured curve is the orbit of the Moon in the
inertial or sidereal plane. Painting five Earth-Moon constellations Kepler shows
the quick motion of the Moon at the oppositions.

The meeting of Tycho and Kepler in Benatek and Prague was a good coinci-
dence for natural science. Max Brod describes their living together in his novel
Tycho Brahes Weg zu Gott published by Wolff Verlag in Leipzig in 1915. Entry
[1] in the References contains further data on Kepler’s work.

A further landmark in the development of the moon theory is due to Isaac
Newton. On April 21, 1686, Halley informed the Royal Society that New-
ton’s work with the title Philosophiae Naturalis Principia Mathematica would
be ready for print. This first edition contains a proposal for solving the 3-body
problem. Furthermore, the different anomalies in the motion of the Moon are
handled in a unified manner. But Newton had a problem with the apsides pe-
riod, so he later reveals to his colleague John Machin that his head never ached
but with his study on the Moon. Richard Westfall’s biography [2] is recommend-
able. A wonderful representation of the history of astronomy up to Newton we
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find in A. Koestler’s book on the sleepwalkers [3].
The Universal Law of Gravitation is one of Newton’s great discoveries. All

of Kepler’s Laws follow as a direct consequence of the Universal Law. Newton
created the foundation for the research of Leonhard Euler, G.W. Hill, and E.W.
Brown mentioned next.

We have to include Leonhard Euler in our list. In [4] we quote Euler’s two
moon theories: Theoria motus lunae (Berlin 1753) and Theoria motuum lunae
(Saint Petersburg 1772). Euler introduced the rotating or synodic system of
coordinates in his second book.

Euler’s first theory had an important practical application: After a shipping
disaster the British Board of Longitude opened a price competition with the aim
to improve the navigation possibilities on the high seas. Using Euler’s moon
theory Tobias Mayer developed a method and submitted it to the Board
in 1755. Mayer’s widow, Euler and the constructor of a chronometer, John
Harisson, shared the prize.

In the lecture Eulers Beiträge zu Variationsrechnung und Himmelsmechanik
[9, Sitzungsber. Leibniz-Soz. Berlin, Band 94, p. 57-65, 2008] and in the sup-
plementation of Dieter B. Herrmann on page 66 one can find further information
on Euler’s and Mayer’s work.

Finally, we mention G.W. Hill and E.W. Brown. The methods of the re-
stricted 3-body analysis are the basis of G.W. Hill’s famous moon theory. Earth
and Sun are the primaries and the Moon orbits around the Earth in Euler’s ro-
tating or synodic system of coordinates. By using proper simplifications Hill
developed the potential

Ω =
3

2
x2 +

1

r
(1)

which enters into Newton’s equation of motion for the Moon:

ẍ− 2ẏ =
∂Ω

∂x
, ÿ + 2ẋ =

∂Ω

∂y
. (2)

Hill’s variation orbit, sketched in Figure 2, is an important solution of system
(2); we adopt on the whole Stumpff’s picture in [15, II, p. 519].

The variation orbit is related to the variation anomaly of the Moon. In Figure
2 we see that the central distance of the test body on Hill’s orbit becomes smaller
close by the oppositions and conjunctions and bigger at the quadrature points.
Smaller distance – quicker motion, bigger distance – slower motion: Tycho’s
observation and Hill’s orbit go well together.

We recommend two references: Karl Stumpff’s opus on celestial mechanics
[15, II, p. 56-60 and p. 511-522] and Victor Szebehely’s Theory of Orbits [16,
p. 602-629]. Szebehely’s book can be regarded as the encyclopaedia of the
restricted 3-body analysis.

Hill published his famous moon theory in [5]. It is the basis of the research of
E.W. Brown who is the creator of the most accurate theory on the lunar motion.

6



Figure 2: Variation orbit of the moon theory in the synodic plane

With the advent of digital computers Brown’s Fourier expansions, given to his
1919 tables, began to be used for computation.

In Fergus Wood’s Tidal Dynamics we recognize the importance of Brown’s
Improved Lunar Ephemeris. In Tables 16 and 16a in [17, I, p. 159-218] lunisolar
ephemerides are presented over the period 1600 – 2164 with great exactness. At
the beginning of the Tables, on pages 160 to 165, we see long Fourier expansions
for the elements of motion of the Moon. Wood’s Tables will play an important
part in the subsequent earthquake research.

3 The second level approximation for the orbit
of the Moon

3.1 The big anomalies

Of course, on the first approximation level Kepler’s Laws determine the motion
of the Earth’s satellite. However, the influence of the disturbing attraction of
the Sun is tremendous, so the rules of the 3-body analysis must be taken into
account on the next approximation step. It is not surprising that anomalous
librations disturb the lunar motion.

The variation anomaly must be mentioned first; its period 1
2Usyn with the

synodic month
Usyn = 29.530 59 days (3)

shows the direct influence of the Sun. The synodic period is the time interval
from new moon to new moon. The single periods have different lengths. In
Fergus Wood’s Tidal Dynamics one can find fluctuation data in Table 17 in [17,
I, p. 231-239], a difference of 0.54 days in the length of the synodic periods is
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possible. In (3) we see the mean value Usyn of the periods U measured over a
long time of observation.

The 3-body system Sun-Earth-Moon cannot endure elliptic inequality and
variation alone, so a motion of compensation, the evection anomaly, is neces-
sary. When developing the Fourier expansions for the lunar orbit the evection
comes into play via the addition formulas of the trigonometric functions.

In the expansion of the ecliptic longitude of the Moon one can see the power
of the anomalies:

true longitude = mean longitude

+ 377.3′ sinL+ . . . (elliptic inequality)

+ 76.4′ sin(2D − L) + . . . (evection) (II)

+ 39.5′ sin(2D) + . . . (variation)

+ . . .

The numerical values are taken from Karl Stumpff’s work on celestial mechan-
ics [15, I, p. 38]. Surprisingly, the motion of compensation is stronger than the
variation trigger.

Two further main anomalies are the revolution of the line of apsides and
the revolution of the nodes. In Section 4.6 the simple approximation formula
(51) on the period of nodes is developed. For this reason we can withdraw into
the synodic plane and deal only with variation, evection and apsides revolution
in the future.

3.2 Euler’s synodic system of coordinates and Hill’s time
normalization

Have a look at the three celestial bodies Sun, Earth and Moon in Figure 3. Out
of the box we see the inertial or sidereal plane. The Sun is in the centre of
the plane, the Earth circles around the Sun with angular velocity n and the
Moon orbits around the Earth. To study the complicated course of the Moon
it is advantageous to work in the rotating or synodic plane. The straight line
through Sun and Earth is the abscissa of the synodic system, the perpendicular
line through the Earth is the ordinate. Of course, the planet is in the centre of
the plane in the moon theory. In the box we see the synodic system and the
orbit of the Moon relative to the new x- and y-axis. In 1772 Euler introduced
the rotating system of coordinates; it is the basis of his second moon theory in
[4].

In Hill’s moon theory we have the normalization n = 1 for the angular
velocity of the Earth. Evidently, the transformation formula is

t[Hill′s time] : 2π = τ [days] : Us (4)

with the sidereal year
Us = 365.256 36 days. (5)

8



Figure 3: The orbit of the Moon in the sidereal system and in the synodic
system in the box

Example: For its way from M1 to M3 in Figure 3 the Moon needs the period
1
2Usyn. Starting with t1 = 0 we find

t3 =
Usyn
Us

π (6)

on Hill’s scale.
Finally we determine the mean longitude ϕm in formula (II) by decoding

Figure 3. The mean longitude is linear in t; without restriction we start with
ϕm(t1) = 0 for t1 = 0 and set ϕm = Pt.

Proposition: The mean longitude part in (II) relative to Hill’s time t is

ϕm =
Us
Usyn

t =
365.256 36

29.530 59
t = 12.368 74 t. (7)

Proof: In the course of half a synodic month the angle ϕm in the synodic box in
Figure 3 increases from ϕm(t1) = 0 up to ϕm(t3) = π. Hill’s time t3 is calculated
in (6), and inserting it into (7) we find the desired result:

ϕm(t3) =
Us
Usyn

t3 =
Us
Usyn

Usyn
Us

π = π. (8)

Since the linear relation (7) is checked for t3, it is valid for all t, q.e.d. The
corresponding quantity to Us/Usyn in Stumpff’s investigation is ν = ν′ − 1; see
[15, II, p. 520].
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3.3 E.W. Brown, F.J. Wood and the coefficients of the
Fourier expansion

The basic formula for our program we find in Fergus Wood’s Tidal Dynamics.
In Tables 16 and 16a in [17, I, p. 159-218] lunisolar ephemerides are presented
over the period 1600 – 2164. To determine these precise data the long Fourier
expansions on pages 160 to 165 are used. We recognize the importance of E.W.
Browns Improved Lunar Ephemeris. Let us start with the expansion for parallax
π on page 161:

π = 3422.608 (mean parallax)

+ 186.540 cosL+ . . . (elliptic inequality)

+ 34.312 cos(2D − L) + . . . (evection) (9)

+ 28.233 cos(2D) + . . . (variation)

+ . . .

The lunar parallax as a measure of distance is defined as the apparent equatorial
angular semi-diameter of the Earth as it would be seen from a position at
the centre of the Moon. We take over the evection argument 2D − L used in
(II). The Fourier coefficients are related to arc seconds. For our second level
approximation we only have to list the big terms in (9). In the first line the
mean parallax of the Moon,

πm = 3422.608′′ = 57′ 2.608′′ = 0.954 724◦, (10)

is registered and the mean km value of the lunar distance is

p =
6378.14

sinπm
= 384 397 km; (11)

see [17, I, p. 22, 27].

Kepler’s First Law (IK) steers the following calculations. It is

π = πm{1 + e cosL+ f cos(2D − L) + g cos(2D) + . . . } (12)

with

e =
186.540

3422.608
= 0.054 502, f = 0.010 025, g = 0.008 249. (13)

Now we translate the parallax formula (9) into a 1/km formula:

sinπ

6378.14
=

sin[πm{1 + e cosL+ f cos(2D − L) + g cos(2D) + . . . }]
6378.14

. (14)

On the left-hand side the reciprocal radius of the Moon appears:

sinπ

6378.14
=

1

r
= ρ. (15)
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A good approximation for the right-hand side is

sinπm
6378.14

× {1 + e cosL+ f cos(2D − L) + g cos(2D) + . . . } (16)

with the reciprocal of the mean distance 1/p as prefactor.
Test of the quality of the approximation on the right-hand side: On 1912/01/04

a full moon with maximal parallax πmax = 61′ 31.6′′ appeared. According to
Wood’s tables it is the biggest parallax in the period 1600 – 2164. Inserting into
formula (12) yields

πmax = 3691.6′′ = 3422.608′′{1 + 0.078 592 7} = πm{1 + 0.078 592 7}. (17)

We have to compare the values of (14) and (16): It is

sin[πm{1 + 0.078 592 7}]
6378.14

=
sinπmax
6378.14

= 2.805 912 · 10−6, (18)

and the reciprocal value rmin = 356 390 km is the distance of the Moon on
1912/01/04. For the approximation (16) we find

sinπm
6378.14

× {1 + 0.078 592 7} = 2.805 937 · 10−6 (19)

and r = 356 387 km. The approximate distance is ∼ 3 km smaller than rmin.
On the other side, the approximate value is ∼ 3 km bigger than rmax. For the
other r-values the km difference is even smaller. If essential we can compensate
the difference.

To sum it up, the 1/km relation

ρ =
1

r
=

1

p
{1 + e cosL+ f cos(2D − L) + g cos(2D) + . . . } (20)

is a good approximation of the parallax formula (9). The Fourier expansion for
parallax π in [17, I, p. 161] holds 37 terms. We can put in all these terms in
our km formula, too.

The next problem is the study of the arguments of the cos functions.

3.4 The arguments of the Fourier expansion

The variation term g cos(2D) in (20) is assigned to the variation orbit of the
Moon in the synodic plane in Figure 2, so g cos(2ϕ) is the substitute in the
(ρ, ϕ) coordinate system and

D = ϕ. (21)

The period is 1
2Usyn and, because of g = 0.008 249 > 0, the distance of the

Moon becomes smaller close by the oppositions and conjunctions and bigger at
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the quadrature points. We pay attention to Tycho’s observation.

Finally, we determine the arguments of elliptic inequality and evection anomaly.
As sketched in Figure 3 we assume that M1 is a perigee position for the Moon
with t1 = 0 and ϕ(t1) = 0. We have to set L(t1) = 0, (2D − L)(t1) = 0 and
2D(t1) = 0, then

1

r(t1)
=

1

p
{1 + e+ f + g + . . . } (22)

and, because of e, f, g > 0, the perigee precondition is taken into account.

The elliptic term e cosL arranges the apsides revolution, so the anomalistic
month

Uano = 27.554 55 days (23)

must be introduced. The anomalistic period is the time interval from perigee
to perigee. The single periods have different lengths because of the influence of
evection, variation, and other anomalies. In (23) we see the mean value Uano
of the periods U measured over a long time of observation. Table 17 in [17, I,
p. 231-239], already mentioned in Section 3.1, also contains fluctuation data on
anomalistic periods.

For the argument L of the elliptic term we need a linear relation which only
contains mean values. Proposition: Related to Hill’s time t it is

L =
Us
Uano

t. (24)

L(t1) = 0 for t1 = 0 is taken into consideration.
Proof: In Figure 3 we see the perigee M1 and the next apogee M2. For its

way from M1 to M2 the Moon needs the period 1
2 Uano. Starting with t1 = 0

translation formula (4) yields

t2 =
Uano
Us

π (25)

on Hill’s scale. The argument L increases from L(t1) = 0 up to L(t2) = π.
Inserting t2 into (24) we find the desired result:

L(t2) =
Us
Uano

Uano
Us

π = π. (26)

Since the linear relation (24) is checked for t2, it is valid for all t, q.e.d.

The term f cos(2D − L) takes care of the evection anomaly in (20), so the
evectional month

Ueve = 31.811 94 days (27)

must be introduced. The evectional month is not so common as the months
mentioned so far, a derivation of the numerical value will be supplemented in
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Section 3.5. The evectional period is the time interval between the parallax
maxima of the evectional deviation – in other words: the time interval from
”evectional perigee” to ”evectional perigee”. Of course, the single periods have
different lengths and sway around the mean value Ueve.

For the argument 2D−L we need a linear relation which only contains mean
values. Proposition: Related to Hill’s time t it is

2D − L =
Us
Ueve

t. (28)

(2D − L)(t1) = 0 for t1 = 0 is taken into consideration.
Proof: Approximately one day after having passed M3 in Figure 3 the Moon

comes to the ”evectional apogee” M4. For its way from M1 to M4 the period
1
2 Ueve is needed. Starting with t1 = 0 translation formula (4) yields

t4 =
Ueve
Us

π (29)

on Hill’s scale. The argument 2D − L increases from (2D − L)(t1) = 0 up to
(2D − L)(t4) = π. Inserting t4 into (28) we find the desired result:

(2D − L)(t4) =
Us
Ueve

Ueve
Us

π = π. (30)

Since the linear relation (28) is checked for t4, it is valied for all t, q.e.d.

With (II) and (7) we find the passage from Hill’s time t to longitude ϕ:

ϕ = ϕm + · · · = Us
Usyn

t+ . . . and t =
Usyn
Us

ϕ+ . . . . (31)

Replacing t in (24) and (28) by the mean value term in (31) we arrive at the ϕ
formulas

L =
Usyn
Uano

ϕ and 2D − L =
Usyn
Ueve

ϕ (32)

for the arguments.

Interim result: As sketched in Figure 3 we assume that M1 is a perigee
position for the Moon. In this case we developed the (r, ϕ) formula

ρ =
1

r
=

1

p
{1 + e cos(

Usyn
Uano

ϕ) + f cos(
Usyn
Ueve

ϕ) + g cos(2ϕ) + . . . } (33)

for the lunar orbit.

3.5 The evectional month and the Harmonic Theorem

Comparing the arguments in (20) and (33) yields

Usyn
Ueve

ϕ = 2D − L = 2ϕ− Usyn
Uano

ϕ,
1

Ueve
=

2

Usyn
− 1

Uano
(34)
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Figure 4: The harmonic periods

and the numerical value of Ueve amounts to

Ueve =
UsynUano

2Uano − Usyn
= 31.811 94 days. (35)

3.5.1 Kepler’s Harmonice Mundi

Finally we point to a property in Kepler’s spirit.

Harmonic Theorem: The synodic month is the harmonic mean of anomalistic
and evectional month,

1

2
(

1

Uano
+

1

Ueve
) =

1

Usyn
. (36)

In the motion of the three celestial bodies Sun, Earth and Moon there are

month Usyn, perigee and apogee with Uano, the variation with 1
2Usyn, and the

evectional compensation with Ueve. Formula (36) connects these periods in a
harmonic way. Usid does not appear because the three bodies do not pay atten-
tion to the sidereal system. In Figure 4 one can see the proportion of the three
months.

My endeavour to find the Harmonic Theorem in the literature led me to
Kepler’s opus Harmonices Mundi Libri V [1, HM]. In Chapter III of Liber III,
which is devoted to music, the Harmonic Proportion is discussed:

If a and b are given numbers with a < b, then 2ab
a+b is the harmonic mean of a

and b and the quotient a : 2ab
a+b = a+b

2 : b is termed Harmonic Proportion.

The periods Uano, Usyn and Ueve mark three points on the line in Figure 4
which lie in a harmonic position, so the Harmonic Proportion can be assigned:

Uano : Usyn = 27.554 55 : 29.530 59 = 0.933 085 ≈ 14 : 15 = 0.933 333. (37)

14/15 is a ”small-integer approximation” of the Harmonic Proportion.

Surprisingly, the fraction 14/15 appears again in another connection in Har-
monice Mundi. In Chapter IX of Liber V, which is devoted to astronomy, Kepler
assigns proportion values to the motion of the planets; Proposition XXVIII says

14

striking constellations and periods: the new and full moon positions and the



in original Latin:

Telluri propria motuum proportio competebat 14.15. circiter: Veneri 35.36.
circiter.

The proportion 14/15 belongs to the motion of the Earth and according to
Kepler’s proof it is a ”small-integer approximation” to

2916 : 3125 = 0.933 120; (38)

so the difference between the exact values in (37) and (38) is smaller than 4·10−5

.

The proportion 14/15 appears both in the revolution of the Moon around
the Earth and in the revolution of the Earth around the Sun, so we can deduce
the

Musical Theorem: The motions of Earth and Moon play the same sound in
the music of spheres of the solar system.

One can speculate that the Moon has taken over the harmony when splitting
off from the Earth. After this excursion into Kepler’s world of ideas we descend
to our approximation program.

3.6 Perigee-syzygy separation and the second level ap-
proximation for the orbit of the Moon

Let us assume that e > 0 in (IK) . Then the perihelion lies in the direction
ϕ = 0. This initial condition can be fulfilled in every sidereal year of the planet.

Because of e, f, g > 0 in (13) and (33) the perigee lies in the full moon di-
rection ϕ = 0. Since one cannot expect that perigee and full moon coincide in
real nature a problem arises. Fortunately, we can handle the problem with the
aid of Fergus Wood’s Tidal Dynamics. In column 9 of Tables 16 and 16a in [17,
I] one can find full moon dates with small perigee-syzygy separation |P − S|.
Nine present-time examples are:

2007/10/26 F P-S = 7 hours π = 61′26.9′′

2008/12/12 F P-S = 5 hours π = 61′29.3′′

2010/01/30 F P-S = 3 hours π = 61′29.3′′

2011/03/19 F P-S = 1 hour π = 61′29.6′′

2012/05/06 F P-S = -1 hour π = 61′25.7′′

2013/06/23 F P-S = -1 hour π = 61′25.3′′

2014/08/10 F P-S = 0 hours π = 61′26.3′′

2015/09/28 F P-S = -1 hour π = 61′26.5′′

2016/11/14 F P-S = -2 hours π = 61′30.2′′

15



Table 1. Dates with small perigee-syzygy separation

We see the development of the perigee-syzygy separation in 14×Usyn steps
and the development of the lunar parallax. In 2014/08/10 the time difference
between perigee and full moon is less than half an hour. This date is a good
initial value for our Fourier expansion.

Approximation formula for the orbit of the Moon: Let us introduce polar
coordinates with reciprocal radius (ρ = 1

r , ϕ) in Euler’s rotating or synodic plane
with the Earth in the centre. We assume that ϕ1 = 0 is related to 2014/08/10.
Then the following second level approximation formula is valid:

ρ =
1

r
=

1

p
{1 + e cos(

Usyn
Uano

ϕ) + f cos(
Usyn
Ueve

ϕ) + g cos(2ϕ)}, (I)

where

Usyn = 29.530 59 days, Uano = 27.554 55 days, Ueve = 31.811 94 days (Ia)

are the synodic, anomalistic, and evectional month and

e = 0.054 502, f = 0.010 025, g = 0.008 249 (Ib)

the parameters of elliptic inequality as well as evection and variation anomaly.
p = 384 397 km is the mean lunar distance.

Remarks: 1. Formula (I) takes into consideration the big anomalies evection,
variation and the revolution of the line of apsides. The e term steers the apsides
revolution. One can improve the quality of the approximation by adding further
terms of the Fourier expansion for parallax π in [17, I, p. 161].

2. Kepler’s Second Law, the area theorem, connects angular ϕ and time t.
An elementary integral of arctan type describes the function t = t(ϕ) for the
planetary orbits. In the lunar case the mean longitude formula (7) makes a
passage from ϕ to t possible – on a low approximation level. In [17, I, p. 162,
163] we learn that more than 100 Fourier terms are necessary to get the quality
of Tables 16 and 16a.

3. Looking at the development of the parallax in the table above we see the
extreme proxigean spring tide on 2011/03/19 with a (local) parallax maximum.
Eight days earlier the Great 2011/03/11 Japan Quake happened. The next par-
allax maximum 2016/11/14 is forthcoming. From the perigee-syzygy problem
in (I) we are led to the earthquake research.

3.7 Orbits and rays in Einstein’s theory of relativity

Because of the curvature of space and time Kepler’s First Law must be modified
in relativity theory: The orbit of a planet in the Schwarzschild space has the
shape of an ellipse but there is a small revolution of the line of apsides. The
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small relativistic part of the precession of the perihelion of Mercury is a clas-
sical confirmation of Einstein’s theory. An exact (ρ, ϕ)-formula is presented in
Über Planetenbewegung und Lichtbahnen im Schwarzschild- und im Reissner-
Nordström-Raum [8, p. 357, 358]. Surprisingly, in Reissner-Nordström space
one can construct geodesic null lines with perihelion, aphelion and with a rev-
olution of the line of apsides. So photons run through orbits customary in the
moon theory – a confirmation of the duality of light; see [8, p. 369, Abb. 6].

4 Studies on the periods of the moon theory

4.1 A collection of periods

The motion of the Moon is a complicated subject with a multidude of periods.
Let us compile a collection:

Usyn = 29.530 59 days synodic month
Usid = 27.321 66 days sidereal month
Uano = 27.554 55 days anomalistic month
Ueve = 31.811 94 days evectional month
Unod = 27.212 22 days nodical or draconic month
Utro = 27.321 58 days tropical month

Us = 365.256 36 days sidereal year
Ut = 365.242 20 days tropical year

Ua = 8.8479 tropical years apsides cycle, forward moving
Ue = 1.1274 tropical years evectional cycle
Un = 18.6134 tropical years nodes cycle, retrograde moving
Up = 25800 years platonic year

Table 2. Months, years and cycles

The numerical values of the months and years are listed online in ”Solar System
Data” tables, only Ueve is not so common. For this reason we determined the
evectional month in Section 3.5. The cycles can be calculated according to Table
3 below. Of course, the collection is not complete; for example, the old Saros
period, well-known to Chinese and Babylonian astronomers, is not listed. The
theory of cycles developed by Fergus Wood for the purpose of tidal dynamics in
[17, II] is admirable.

4.2 Period relations

First we present a group of relations which combines months with long periods:
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1
Usyn

= 1
Usid
− 1

Us
Usyn = Usid : (1− Usid

Us
) Us = Usid : (1− Usid

Usyn
)

1
Uano

= 1
Usid
− 1

Ua
Uano = Usid : (1− Usid

Ua
) Ua = Usid : (1− Usid

Uano
)

1
Ueve

= 1
Usyn

− 1
Ue

Ueve = Usyn : (1− Usyn

Ue
) Ue = Usyn : (1− Usyn

Ueve
)

1
Unod

= 1
Usid

+ 1
Un

Unod = Usid : (1 + Usid

Un
) Un = Usid : ( Usid

Unod
− 1)

1
Utro

= 1
Usyn

+ 1
Ut

Utro = Usyn : (1 +
Usyn

Ut
) Ut = Usyn : (

Usyn

Utro
− 1)

1
Utro

= 1
Usid

+ 1
Up

Utro = Usid : (1 + Usid

Up
) Up = Usid : (Usid

Utro
− 1)

Table 3. Period relations

These formulas will be proved in the following sections.

In order to calculate the platonic year Up it is advantageous to use the long-
period relation

1

Up
=

1

Ut
− 1

Us
. (39)

Proof of (39) by inserting the months in the 1/U formulas in rows 1, 5, 6 of
Table 3. Formula (39) yields

Up
Us

=
Ut

Us − Ut
=

365.242 20

365.256 36− 365.242 20
= 25, 794 sidereal years. (40)

A 4-digit calculation with corresponding accuracy was carried out.

There is a second long-period relation:

1

Ue
=

1

Us
− 1

Ua
. (41)

Proof of (41) by inserting the months in the 1/U formulas in rows 1, 2, 3 of
Table 3 and by considering additionally the Harmonic Theorem (36). Formula
(41) can be interpreted as the Harmonic Theorem for Long Periods. In Section
5.1 we will see that Ue is the long period of the beat oscillation of the lunar
distance function, it is significant in earthquake statistics.

4.3 (Usyn − Usid − Us) and the systems of coordinates

We turn to the first row ”(r1)” of Table 3. Usyn can be calculared if Usid and
Us are known. Likewise, if Usyn is known then Usid can be determined.

For the proof of (r1) we need some steps. In Figure 3 we can see how the
sidereal and synodic plane are linked; so it is natural to prove (r1) by decoding
Figure 3.

First we look at the motion of Earth and Moon in the sidereal plane outside
the box. The Earth circles around the Sun with constant angular velocity and in
the period 1

2Usid the Moon runs from M1 to M2. Therefore the radian measure
of the angle t2 fulfils the proportion

t2 : 2π =
1

2
Usid : Us (42)
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with the sidereal year Us of the Earth.
Now we look at the motion of the Moon in the synodic plane inside the

box. Working with the mean value Usyn we assume that the Moon circles
with constant angular velocity around the Earth. In the period 1

2 (Usyn − Usid)
the Moon runs from M2 to M3. Therefore the angle t2 in the box fulfils the
proportion

t2 : 2π =
1

2
(Usyn − Usid) : Usyn. (43)

Comparing (42) and (43) we find Usid

Us
= 1− Usid

Usyn
and the third equality in (r1)

is proved. The other two equalities follow, q.e.d.

4.3.1 Moons of other planets

Amalthea

The relations in (r1) can also be used for forward-moving moons in the solar
system with small inclination because the proof is valid in the general case. For
the moon Amalthea in Jupiter’s system the data

UAsid = 0.498d, UAsyn = 11h57m27.6s (44)

are given in [14, p. 127], where (d, h,m, s) are the time scales of the Earth.
Obviously, UAsyn = 0.498 236d; because of 0.1s = 0.000, 001d only on the 6th

digit an alteration ±1 is possible. According to (r1) the period UAsid can be
calculated with the same accuracy:

UAsid = UAsyn : (1+
UAsyn
UJs

) = 0.498 236 : (1+
0.498 236

4332.598
) = 0.498 1787d = 11h57m22.6s.

(45)
So the list with the inaccurate sidereal data in [14] is not necessary. In [12] one
can find our 6-digit value for the sidereal month of Amalthea.

Phoebe

For the retrograde-moving moon Phoebe in Saturn’s system the data

UPsid = 550.337d, UPsyn = 523d13h (46)

are given in [13]. In the retrograde case the arrangement of the months changes,
UPsyn < UPsid, and in (r1) signs have to be altered. Phoebe’s plane of motion
has an inclination of 150◦. Looking ”from below” we see an inclination of 30◦.
Despite this gradient we use the ”plane formula” (r1), but we have to change
the sign:

UPsyn = UPsid : (1+
UPsid
USs

) = 550.337 : (1+
0.550.337

10, 759 22
) = 523.5569d = 523d13h22m.

(47)
Because of 0.001d = 1.44m one can calculate the synodic period up to ±2m

using the more accurate sidereal value and (r1).
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4.4 (Usid−Uano−Ua) and the revolution of the line of apsides

We turn to the second row (r2) of Table 3. First the inequality Uano > Usid can
be recognized, it shows the advance of the apsides.

Proof of (r2): After an anomalistic month the precession angle of the perigee
is Uano−Usid

Usid
·2π in radian measure because Usid corresponds to 2π in the sidereal

system. After Usid

Uano−Usid
anomalistic months or Usid

Uano−Usid
· Uano = Ua days the

perigee of the Moon has turned around the Earth once and the third equality
of (r2) is proved. The other two equalities follow, q.e.d.

4.5 (Usyn − Ueve − Ue) and the evection anomaly

We turn to the third row (r3) of Table 3. Transferring the anomalistic methods

we can manage the evectional problem. The anomalistic part 1
p{1+e cos(

Usyn

Uano
ϕ)}

of the second level approximation (I) indicates the perigee positions with the

distance p
1+e . Similarly, the evectional part 1

p{1 + f cos(
Usyn

Ueve
ϕ)} indicates the

”evectional perigee” positions with the distance p
1+f . If both parts work to-

gether a ”proxigean perigee” appears.

Proof of (r3): After an evectional month the precession angle of the ”evec-

tional perigee” is
Ueve−Usyn

Usyn
· 2π in radian measure because Usyn corresponds

to 2π in the synodic system. After
Usyn

Ueve−Usyn
evectional months or

Usyn

Ueve−Usyn
·

Ueve = Ue days the ”evectional perigee” of the Moon has turned around the
Earth once and the third equality of (r3) is proved. The other two equalities
follow, q.e.d.

The lunar evectional cycle Ue, the central period of this treatise, is not so
common than the other cycles. For this reason we determine the numerical
value:

Ue =
UsynUeve
Ueve − Usyn

= 411.785 days = 1.1274 tropical years. (48)

A 6-digit calculation with corresponding accuracy was carried out.
Having determined the numerical value of Ue we can remind of the second

observation in [11]:

The time between the Whitsun Quake in China on 2008/05/12 and the Christ-
mas Tsunami in Indonesia on 2004/12/26 amounts to 1233 days. On the other
hand, three lunar evectional cycles take 3× Ue = 3× 411.8 = 1235 days.

This observation is a hint on lunisolar structures in the earthquake distribution.
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We point to three 1/Ue expressions:

1

Ue
=

1

Usyn
− 1

Ueve
=

1

Uano
− 1

Usyn
=

1

2
(

1

Uano
− 1

Ueve
). (49)

With the Harmonic Theorem (36) one can prove the equalities. The first ex-
pression is our definition in (r3) of Table 3, in the second formula we recognize
the definition of Fergus Wood in [17, II, p. 2-4].

4.6 (Usid − Unod − Un) and the revolution of the nodes

We turn to the fourth row (r4) of Table 3. First the inequality Unod < Usid can
be recognized, it shows the retrogression of the line of nodes.

Proof of (r4): After a nodical month the retrogression angle of the nodes is
Usid−Unod

Usid
· 2π in radian measure because Usid corresponds to 2π in the sidereal

system. After Usid

Usid−Unod
nodical months or Usid

Usid−Unod
·Unod = Un days the nodes

of the Moon have turned around the Earth once and the third equality of (r4)
is proved. The other two equalities follow, q.e.d.

Surprisingly, the revolution period of the nodes can be determined in a good
approximation by means of the sidereal periods:

Unod = Usid(1−
3

4
(
Usid
Us

)2). (50)

A short proof can be found in [15, II, p. 545, 546]. Combining (r4) and (50) we

obtain Un = 4
3
U2

s

Usid
days. Thus the simple approximation formula

Un
Us

=
4

3
· Us
Usid

sidereal years (51)

for the period of nodes is developed. Inserting the sidereal periods of the Moon
we find Un/Us = 17.8250 sidereal or 17.8257 tropical years which are 96% of
the observation value in Table 2.

4.6.1 The moon Deimos of Mars

The formulas (r4), (50) and (51) are valid for forward- and retrograde-moving
moons in the solar system. For example, for the companion Deimos of Mars we
have the result:

period of nodes =
4

3
· 779.9

1.2624
= 823.7 years of Mars. (52)

In one year of Mars the retrogression angle is 26.2′. Since the angle of inclination
of the plane of motion of Deimos is 1.8◦, a station on Mars can observe the nodes
and their retrogression.
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4.7 (Usid−Utro−Us−Ut−Up) and the gyroscope movement
of the Earth

Finally we turn to the last two rows of Table 3. In [15, I, p. 22-26] Stumpff
deals with the periods in the motion of Earth and Moon and proves (r5) and
(r6).

In (40) we see a relation between the relatively short periods Us and Ut on
the one hand and the long platonic year Up which is a period describing the
gyroscopic moving of the Earth.

Besides the lunisolar precession of the Earth gyroscope there is also the plan-
etary precession and the geodesic precession of the relativity theory. Because
of the planetary influence the inclination of the ecliptic changes periodically. In
about 40 000 years the angles sway between 21◦55′ and 24◦18′. This oscillation
may be responsible for the glacial period. Are there short periods determining
this long time?

4.8 Further periods and cycles

Before finishing the section with the periods we have to quote F.K. Ginzel’s
contribution [6] to the Encyklopädie with the title Chronologie which contains
further periods and cycles used in old civilizations. For example, Ginzel explains
the Sirius period of the Egyptians, the Babylonian 60 year cycles, the Jupiter
years of India and cycles with the names Lustrum, Yuga, Sabbath year (every
7 years), Jubilee years, Golden years. The classical German poet Jean Paul
invents a chronological order for the organization of his novel Titan by using
the stages Jobelperiode and Zykel. See Zykel 9 for further details.

5 The beat oscillation of the lunar distance func-
tion, tidal dynamics and earthquake research

With the second level approximation (I), developed in Section 3, and with the
period studies in Section 4 we make it possible to uncover a beat interference.

5.1 The beat oscillation

Since the frequencies of the elliptic and evection term in (I) are only slightly
different, a beat interference is generated by the first part

e cos(
Usyn
Uano

ϕ) + f cos(
Usyn
Ueve

ϕ). (53)

From the trigonometric formula

e cosα+f cosβ = (e+f) cos(
α+ β

2
) cos(

α− β
2

)−(e−f) sin(
α+ β

2
) sin(

α− β
2

)

(54)
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Figure 5: The beat oscillation of the lunar distance function and earthquake
events

we read the long period 2
α−β · 2π of the interference. In our case we get

lpbo =
2

Usyn

Uano
− Usyn

Ueve

· 2π[rad] =
2

Usyn

Uano
− Usyn

Ueve

· Usyn[days] (55)

for the long period of the beat oscillation. In the synodic plane ϕ = 2π corre-
sponds to Usyn. Fortunately we have the third expression in (49):

lpbo =
2

1
Uano

− 1
Ueve

= Ue. (56)

Beat Theorem: The lunar evectional cycle Ue is the long period of the beat
oscillation of the lunar distance function.

In Figure 5 we present the r-graph of the second level approximation (I),
r = p : {1 + · · · }. We have the mean distance normalization p = 1 in the
picture. One can see the beat oscillation, generated by the two strong terms in
(53), together with a small disturbance by the variation term: the amplitude of
the lower envelope of the quick oscillations is bigger than the amplitude of the
upper envelope.

Trigonometric sums of type (I) – exponential sums in the language of com-
plex analysis – are complicated mathematical objects. G.P. Meyer and the
author studied exponential polynomials in Arch. Math. 36, p. 255-274, 1981.

We have to discuss a period problem. On the one hand there are the syzygys
with the time period Usyn between the new or full moons, on the other hand
the cycle

Ue = 411.785 days (57)
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appeared. It can be approximated by 14 synodic months:

14× Usyn = 413.428 days. (58)

Almost every 20 years a 13× Usyn period must be introduced to bring syzygys
and beat oscillation in a good relation.

We come back to Observation 2 in [11]:

The time between the Whitsun Quake in China on 2008/05/12 and the Christ-
mas Tsunami in Indonesia amounts to three evectional cycles.

Figure 5 shows that both events happened in high amplitude periods of the beat
oscillation.

Conjecture: Since tide-rising force varies inversely as the third power of the
lunar distance one can expect that in the high ampitude periods of the beat os-
cillation the seismic activity is above average.

5.2 F.J. Wood’s classification of spring tides

When the Moon is full or new, the gravitational pull of the Moon and Sun are
combined and spring tides are the consequence. High spring tides occur when
the Moon is close to the Earth on its elliptical path.

Wood [17, II, p. 165] presents a classification of the spring tides related to
the distance of the Moon. The classes are characterized by the following inter-
vals for parallax π:

61′30.7′′ ≤ π < 61′32.0′′ maximun proxigean spring tides
61′29.0′′ ≤ π < 61′30.7′′ extreme proxigean spring tides
61′26.5′′ ≤ π < 61′29.0′′ proxigean spring tides
60′20.0′′ ≤ π < 61′26.5′′ perigean spring tides
59′00.0′′ ≤ π < 60′20.0′′ pseudo-proxigean spring tides
55′00.0′′ ≤ π < 59′00.0′′ ordinary spring tides

Table 4. Classification of spring tides

Now we can impart the observation in [10]:

The first extreme proxigean spring tide in the new millennium happened on
2005/01/10 in new moon phase. Half a synodic month earlier, when the Moon
was full, the 2004/12/26 Indonesia Tsunami was triggered.

This observation was a hint on lunisolar structures in the earthquake distribu-
tion. We supplement that the distance of the Moon on 2005/01/10 amounts to
π = 61′29.5′′ or r = 6378.14/sinπ = 356 594 km; see [17, I, Table 16a, p. 204].
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Figure 6: The N- and F-graph and the 8.2+ earthquake events

5.3 The N- and F-graph

Fergus Wood’s Tidal Dynamics is the basis of the following investigations. In
Tables 16 and 16a in [17, I, p. 159-218] lunisolar ephemerides are presented over
the period 1600 – 2164. Date and parallax data we find in Cols. 2 and 4 of the
Tables.

Column 2 contains the date for each case of syzygy associated with a perigee-
syzygy separation |P − S| ≤ 24 hours. The P-S hours are listed in Column 9.
There appear two or three neighbouring new or full moon positions which form
the boundary of synodic months. When constructing the N- and F-graph in
Figure 6 we only take the dates with smallest |P − S| separation and maximal
parallax values into consideration.

These graphs, first introduced in [11, p. 797, Figure 1], show the global
development of the distance of the Moon. For instance, one can see the peak of
the N-graph:

2005/01/10, π = 61′29.5′′, extreme proxigean spring tide,

and, in the upper part of the picture, the 2004/12/26 Indonesia Quake with
magnitude 9.1. After one Saros cycle, on 2023/01/21, the next peak of the
N-graph appears. Having the leap years 2008, 2012, 2016 and 2020 the Saros
period amounts to 18 years and 11 days, approximately; else we have 18 years
and 10 days for the cycle if there are five leap years in the interval.

Not only the peak period, but also the global development of the graphs in
Figure 6 is – obviously – ruled by the Saros cycle. What is the physical reason
for this phenomenon?
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It is also interesting to look at the peak of the F-graph:

2011/03/19, π = 61′29.6′′, extreme proxigean spring tide.

Eight days earlier the 2011/03/11 Japan Quake with magnitude 9.0 happened.

5.4 High amplitude synodic months

Using Fergus Wood’s Tables 16 and 16a we constructed the N- and F-graph in
Section 5.3. Now we continue these studies. Column 2 of the Tables contains
the date for each case of syzygy associated with a perigee-syzygy separation
|P − S| ≤ 24 hours. The P-S hours are listed in Column 9. There appear two
or three neighbouring new or full moon positions which form the boundary of
synodic months. If there are two neighbouring positions, then the perigee lies
in the synodic month between them, in the triple case the P-S separation of the
middle point is small.

Examples: In Table 5 below one can see the N-points 2004/12/12 and
2005/01/10. Two hours before reaching the extreme proxigean N-point the
Moon runs through its perigee. There are three neighbouring F-points in 2011
with P − S = 1 hour for the middle point.

The synodic months between the neighbouring new or full moon positions
with small perigee-syzygy separation lie in the centre of the high amplitude
periods of the beat oscillation of the lunar distance function. We designate
these months as high amplitude synodic months.

How many synodic months have the high amplitude property? Let us check
the problem in the new millennium. Between the new moons 2000/01/06 and
2014/01/01 we count 173 synodic months, 29 months or 29/173 = 16.8% belong
to the high amplitude class.

If the Moon runs through a high amplitude synodic month the lunar distance
varies above average. With the distance the tension of the Earth’s ellipsoidal
surface varies above average. If one of the boundary points of a high amplitude
synodic month is even an extreme or maximum proxigean spring tide, the vari-
ation of the tension is extreme. We bear in mind that tide-raising force varies
inversely as the third power of the lunar distance.

Conjecture: If an extreme or maximum proxigean spring tide occurs then one
can reckon with an above average earthquake activity in the adjoining high am-
plitude synodic month or months in the triple case.

In the period 2000/01/06 – 2014/01/01 only five synodic months of the high
amplitude class begin or end with an extreme proxigean spring tide, they are
listed in Table 5 below. Thus 5/173 = 2.9% of the period are extreme
critical.
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5.5 Extreme proxigean spring tides and the great earth-
quakes in Indonesia 2004, Chile 2010 and Japan 2011

In Table 13 in Wood [17, I, p. 141] a list of the extreme/maximum proxigean
tides over the 400-year period 1600 – 1999 is compiled. We are curious to see
the continuation of Wood’s list in the new millennium. The first four extreme
tides are presented in Table 5 together with the five adjoining high amplitude
synodic months.

Date π = 61′+ Spring tide P-S Mag. Region

2004/12/12 N 8.2” perigean 21
2004/12/26 F 9.1 Indonesia
2005/01/10 N 29.5” extr. proxigean -2

2008/12/12 F 29.3” extr. proxigean 5
2009/01/03 7.7 Indonesia
2009/01/11 F 15.3” perigean -17

2010/01/30 F 29.3” extr. proxigean 3
2010/02/27 8.8 Chile
2010/02/28 F 10.5” perigean -20

2011/02/18 F 3.5” perigean 23
2011/03/11 9.0 Japan
2011/03/19 F 29.6” extr. proxigean 1
2011/04/18 F 6.7” perigean -21

Table 5. Strong earthquakes and extreme proxigean spring tides

Observation: We uncover a lunisolar structure in the distribution of strong
earthquakes. The 8.8+ disasters in the new millennium happened in high am-
plitude synodic months related to extreme proxigean spring tides. As conjectured,
2.9% of our period are extreme critical.

In Table 5 lunisolar ephemerides and earthquake data are composed. We are
glad that we can use Fergus J. Wood’s grand opus on Tidal Dynamics together
with the Significant Earthquake Archive of USGS.

Bearing the lunisolar structure in mind we compile, as a precaution, the
next three extreme proxigean tides and their high amplitude synodic months in
Table 6:
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Date π = 61′+ Spring tide P-S

2016/10/16 F 10.1” perigean 20
2016/11/14 F 30.2” extr. proxigean -2

2017/12/03 F 15.1” perigean 17
2018/01/02 F 29.4” extr. proxigean -4

2022/12/23 N 3.8” perigean 23
2023/01/21 N 29.6” extr. proxigean 0
2023/02/20 N 4.0” perigean -22

Table 6. The next three extreme proxigean spring tides

The 2023/01/21 extreme tide is the ”Saros successor” of the 2005/01/10
event, with π = 61′29.6′′ we find the highest parallax in new moon position in
the period 1600 – 2164. The new moon N with smallest distance from the Earth
in five and a half centuries is forthcoming.

The full moon F with smallest distance since 1948 will happen on 2016/11/14
with π = 61′30.2′′. Its ”Saros successor” on 2034/11/25 is the next extreme tide,
with π = 61′30.9′′ it belongs to the maximum proxigean class in Table 4.

5.6 A physical argument for the triggering of strong earth-
quakes

First we look at the 9.1 Indonesia Earthquake in Table 5 with the extreme
proxigean spring tide on 2005/01/10 at the end of the high amplitude synodic
month. According to column 9 of Table 16a in [17, I] the perigee-syzygy separa-
tion amounts to P −S = −2 hours. Two hours before reaching the N-point the
Moon runs through its perigee with parallax 61′29.6′′; see column 10. Because
of the small P − S separation the parallax at P is not much bigger than at N.

The synodic month 2004/12/12 – 2005/01/10 begins with a perigean and
ends with an extreme proxigean N-point. At the full moon between the N’s the
lunar distance is big. In our synodic month the amplitude of the beat oscillation
of the lunar distance function is extremely high.

At the perigean point the tension of the Earth’s ellipsoidal surface is above
average, at the extreme proxigean end point the tension is extreme. At the
full moon position between the N’s the lunar distance is big an the tension
correspondingly small. When the Moon runs from N to F and back to N the
tension varies above average. In this alteration we see the trigger of the 9.1
Indonesia Quake.

In the other three cases in Table 5 we have extreme proxigean and perigean
F-points. At the new moon between the F’s the lunar distance is big. When
the Moon runs from F to new moon N and back to F the tension again varies
above average and strong earthquakes can be expected.
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For the strongest quake of the last century, the 1960 Chile Quake with mag-
nitude 9.6 we have the data in Table 7:

Date π = 61′+ Spring tide P-S Mag. Region

1960/05/22 9.6 Chile
1960/06/09 F 18.1” perigean 13
1960/07/08 F 22.4” perigean -9

Table 7. Chile 1960

The 9.6 Chile Quake occured 18 days before the high amplitude synodic
month 1960/06/09 – 1960/07/08. We think of the third experiment of Christoph
Gackstatter in [11, p. 801]: An above average number of strong 7.5+ earthquakes
happen in times when the oscillation amplitude of the lunar distance function
is increasing. Tense tectonic plates can be loosened by oscillations of the tide-
raising forces.

Fourteen 8.5+ earthquakes happened since 1950. Four of them fall into high
amplitude months, four into the adjoining months which also belong to the high
amplitude periods.

Even the Great Lisbon Earthquake, triggered on the All Saint’s Day of 1755,
is an example for our physical argument.

Date π = 61′+ Spring tide P-S

1755/11/01 Great Lisbon Quake
1755/11/04 N 26.2” perigean 6
1755/12/03 N 15.4” perigean -16

Table 8. The Great Lisbon Quake

The Lisbon Earthquake occured three days before the high amplitude synodic
month specified in Table 8. Voltaire, Kant, and Goethe report on this disaster.
Being acquainted with this literature Heinrich von Kleist created the dramatic
story Das Erdbeben von Chili where the 1647/05/13 Chile quake is in the back-
ground. According to Wood’s Table 16 the date lies in a low amplitude period
of the beat oscillation.

Statement: One cannot predict earthquakes. Multi-layered effects work
together when earthquakes are created. If a strong earthquake happens in a high
amplitude period of the distance function of the Moon, the lunisolar forces have
made a contribution to the triggering of the quake.
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6 Timing and location of quakes

In an internet publication (PhysOrg.com 2009) we find the report ”Quake Pre-
diction Model Developed” with the statement: ”The forecasting model devel-
oped by Danijel Schorlemmer aims to predict the rough size and location of
future quakes. While the timing of quakes remains unpredictable, progress on
two out of three key questions is significant in the hard discipline of earthquake
forecasting.”

In the present treatise we deal with the third key question. By using Fergus
Wood’s tables in [17, I] we determined the extreme and maximum proxigean
spring tides and the adjoining high amplitude synodic months. These months
are critical time periods and strong earthquakes can be expected. Now we are
faced with the problem to find connecting lines between timing and location
research.

6.1 The prehistory of the 9.1 Indonesia Quake

We have to select suitable intervals for a rectangular earthquake search in the
Significant Earthquake Archive of USGS [18]. In a first experiment we take the
geographical neighbourhood

15◦N to 15◦S, 85◦E to 115◦E (59)

of the point (3.295◦N, 95.982◦E) south of Sumatra where the 9.1 Quake hap-
pened. The Andaman Islands, Sumatra and Java belong to rectangular (59).
The maps in the Earthquake Archive show the distribution of the quakes along
the Java Trench. When looking at the 6.0+, 6.5+, ... earthquakes in the rect-
angular 15◦N to 15◦S, 85◦E to 130◦E in the time after 1986/12/31 we find a
gap in the distribution: the 115◦E meridian divides the Java and Timor Trench
earthquakes. We only consider quake events in the west of the gap and choose
115◦E as the right border line in (59).

Let us start our investigation with the 1986/12/31 peak of the N-graph in
Figure 6 in Section 5.3. This way we have the whole Saros cycle before the 2004
Indonesia disaster in our program.

Interested in strong earthquakes we find out that only three 7.5+ events
happened before the Great 2004 Indonesia Quake. These 7.5+ predecessors fall
into high amplitude periods of the beat oscillation of the lunar distance function.
The lunisolar forces have made a contribution to the triggering of the quakes.
After 2004/12/26 the density of the 7.5+ earthquakes increased. Interested in
the seismic activity in the high amplitude synodic months and in the neigh-
bouring synodic periods we count the 4.5+, 6.0+ and 7.5+ quakes happening
in these months in Table 9.
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Synodic months 4.5+ 6.0+ 7.5+

1994/03/27 – 1994/04/25 h.a.s.m. 7 0 0
1994/04/25 – 1994/05/25 38 3 0
1994/05/25 – 1994/06/23 169 6 1
1994/06/23 – 1994/07/22 21 0 0

2000/05/04 – 2000/06/02 14 0 0
2000/06/02 – 2000/07/01 209 5 2
2000/07/01 – 2000/07/31 h.a.s.m. 34 0 0

2004/11/12 – 2004/12/12 13 0 0
2004/12/12 – 2005/01/10 h.a.s.m. 689 21 1
2005/01/10 – 2005/02/08 727 2 0
2005/02/08 – 2005/03/10 156 2 0

Table 9. Synodic months and the number of earthquakes in rectangular (59)

The high amplitude synodic months are marked with h.a.s.m. The Signif-
icant Earthquake Archive of USGS [18] yields the numbers in Table 9. There
are no overlaps because we insert time intervals of type 1994/03/27 00:00:00 –
1994/04/25 00:00:00 in the first column of Table 9.

6.2 The prehistory of the 9.0 Japan Quake

We have to select suitable intervals for a rectangular earthquake search in the
Significant Earthquake Archive of USGS [18]. In a first experiment we take the
geographical neighbourhood

45◦N to 35◦N, 135◦E to 146◦E (60)

of the point (38.297◦N, 142.373◦E) near the east coast of Honshu where the 9.0
Quake happened. The quakes along the Kuril Islands are omitted.

Let us start our investigation with the 1993/03/08 peak of the F-graph in
Figure 6 in Section 5.3. This way we have the whole Saros cycle before the 2011
Japan disaster in our program.

Interested in strong earthquakes we find out that only three 7.5+ events
happened before the Great 2011 Japan Quake. Two of these 7.5+ predecessors
fall into high amplitude periods of the beat oscillation of the lunar distance
function. The lunisolar forces have made a contribution to the triggering of
the quakes. After 2011/03/11 the density of the 7.5+ earthquakes increased.
Interested in the seismic activity in the high amplitude synodic months and
in the neighbouring synodic periods we count the 4.5+, 6.0+ and 7.5+ quakes
happening in these months in Table 10.
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Synodic months 4.5+ 6.0+ 7.5+

1993/07/03 – 1993/08/02 78 3 1

1994/11/03 – 1994/12/03 h.a.s.m. 8 0 0
1994/12/03 – 1995/01/01 52 6 1
1995/01/01 – 1995/01/30 50 2 0
1995/01/30 – 1995/03/01 16 2 0

2003/08/27 – 2003/09/26 25 2 1
2003/09/26 – 2003/10/25 109 3 0
2003/10/25 – 2003/11/23 h.a.s.m. 44 1 0
2003/11/23 – 2003/12/23 h.a.s.m. 15 0 0

2011/01/19 – 2011/02/18 12 0 0
2011/02/18 – 2011/03/19 h.a.s.m. 1500 55 3
2011/03/19 – 2011/04/18 h.a.s.m. 743 11 0
2011/04/18 – 2011/05/17 238 3 0

Table 10. Synodic months and the number of earthquakes in rectangular (60)

6.3 Common properties

In Tables 5 and 6 in Section 5.5 we presented nine high amplitude synodic
months which begin or end with an extreme proxigean spring tide. The great
earthquakes in Table 5 show that these months are extreme critical. Faced
with the problem to find critical geographical regions we studied the seismic
prehistory of the Great Indonesia and Japan Quake.

In the geographical neighbourhood (59) of the point where the 9.1 Indone-
sia Quake happened and in the Saros cycle before the event we discovered a
low earthquake activity with two short-term runaways caused by above aver-
age lunisolar forces. Then, in the extreme critical synodic month 2004/12/12
– 2005/01/10 the Great Indonesia Quake happened. A backlog demand for
strong earthquakes can be recognized. A similar observation we made in the
neighbourhood (60) of the point where the 9.0 Japan Quake occured.

It would be desirable to compile a list of geographical regions with the above
mentioned properties: low earthquake activity with short-term runaways in high
amplitude periods of the lunar distance function. In these short-term runaways
we see one indicator for the development of a strong earthquake if an extreme
or maximum proxigean spring tide lies ahead.

7 Earthquake statistics with Student’s t-test

Influences the Moon the creation of earthquakes? This question was discussed
controversial in the past. Now we have a statistically significant result on the
problem.

32



In 2010 Christoph Gackstatter made a complete statistical test for the en-
tirety for measured quakes. More than 650,000 earthquakes and 13,860 observa-
tions, which is the total number of days in the database, are used for the linear
regression; see [11, p. 800-804]. With the small 1.83% p-value a fundamental
result is proved:

The lunar evection anomaly, discovered by Hipparcos and installed
in Ptolemy’s epicycle theory, has a statistically significant influence
on the earthquake distribution.

In our computer epoch statistics can handle huge observation data.

We present the steps of Christoph Gackstatter’s proof.

7.1 The beat envelopes

In the preceding sections our study was mainly focused on large single earth-
quake events, now we turn to the entirety of measured quakes.

Conjecture: According to the previous research it is highly probable that the
beat oscillation of the lunar distance function with the evectional period Ue =
411.8 days has an influence on the distribution of earthquakes.

To test the conjecture we introduce the auxiliary function

f(t) = − cos(
2π

205.892 days
t) (61)

with the period Ue/2 of the beat envelopes; see the lower graph in Figure 7.
Hence, if the amplitude of the fast oscillations is maximal the above function is
−1 and if the amplitude of the fast oscillations is minimal the above function is
+1.

The data of our statistical test cover the time from 1973/01/01 to 2010/12/12.
So it is advantageous to fix the initial point f(0) at an extreme proxigean full
moon position in the centre of the time period. The best choice we find in
Wood’s Table 16:

1993/03/08 F 61’30.0” extreme proxigean P-S = -2 .

From this point the f-values of all the other days can easily be cal-
culated. For instance, for the extreme proxigean full moon on 1976/02/26 we
find f(t) = −0.9942. The minima of f(t) are close to the dates of the points of
the N- and F-graph.
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Figure 7: The beat oscillation of the lunar distance function, earthquake events
and the auxiliary function f(t)

7.2 Earthquake data

Earthquake data are provided by the website of the National Earthquake Infor-
mation Center. Four particular data sets are created:

– total number of earthquakes per day,
– number of earthquakes with magnitude ≥ 6 per day,
– number of earthquakes with magnitude ≥ 7.5 per day,
–

∑
i∈day 10magn(i) per day.

The last data set is created in order to give higher weights to stronger earth-
quakes. Figures B1, B2, B3 and B4 in [11] show plots of the sets over the given
time period.

7.3 Methodology and results

Christoph Gackstatter used Student’s t-test and 90% confidence intervals to
check whether or not there is a relationship between the evectional beat cycle
and earthquake statistics.

1st experiment. In a first experiment he tested whether f(t) and the earth-
quake statistics are directly related by considering daily observation. More than
650,000 earthquakes and 13,860 observations are used for the linear regression.
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The most striking detail of the first experiment is the smallness of the p-value
for the total count. With p-value = 1.83% a significant relationship between
the total number of earthquakes per day and the evectional beat interference is
uncovered. The evection anomaly has a significant influence on the earthquake
distribution.

2nd experiment. Secondly, Christoph Gackstatter tested whether there are
more (or stronger in the case of the fourth data set) earthquakes when f(t) is
negative. One can do this by summing up the earthquake count for f(t) < 0
and connect it with the dummy variable 1. The same is done for f(t) > 0
and the dummy variable 0. Here only 134 observations can be used since one
observation has the length Ue/4 = 102.964 days. No significant result is found.

3rd experiment. In a third experiment the slope of f(t) is in the centre
of interest. One can assume that there are more earthquakes when the slope is
negative (oscillation amplitude is increasing) and vice versa, again using dummy
variables and 134 observations.

The most interesting result of the experiment is the smallness of the p-value
for the third data set. With the p-value = 7.96% an above average number of
strong 7.5+ earthquakes happen in times when the oscillation amplitude of the
lunar distance function is increasing. In general, the slope of f(t) is negative
in the 3 1

2 months period before the dates of the points of the N- and F-graph.
In Figure 7 four 7.8+ examples are listed which happen in the synodic month
before points of the N-graph.

8 Epilogue

8.1 New insights into old astronomical cycles

The structure of the Saros eclipse cycle

The Saros period, well-known to old civilizations, specifies the time difference
between eclipse phenomena. It is because 223 synodic, 239 anomalistic and 242
draconic months are nearly commensurate.

In [11] we gained a new insight into the cycle. Figures 6 and 7 complement
one another. In Figure 6 we count 16 intervals on the N-graph between the
peaks and there are 14 synodic months between the high parallax N-points in
Figure 7, in general. Approximately every 18 years, for example in 1993/94
and 2012/13, a 13 × Usyn period occurs for compensation reasons. So we find
16× 14− 1 = 223 synodic months or one Saros period between the peaks of the
N-graph. A factorization of the Saros cycle is uncovered.

The lunar evectional cycle Ue
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The grand observer Hipparcos discovered the lunar evection anomaly. Ptolemy
pays attention to the anomaly when creating his epicycle theory.

Fergus J. Wood pointed to the importance of the evectional cycle Ue in tidal
dynamics; see [17, II, p. 2-4]. In formula (49) in Section 4.5 we present defining
expressions for Ue.

Since the frequencies of elliptic inequality and evection anomaly in the mo-
tion of the Moon are only slightly different a beat interference occurs. In Section
5.1 we proved the Beat Theorem: Ue is the long period of the beat oscillation of
the lunar distance function. Since tide-raising force varies inversely as the third
power of the distance of the Moon, one can expect that in the high amplitude
periods of the beat oscillation the seismic activity is above average.

This conjecture is proved true. In 2010 Christoph Gackstatter made a com-
plete statistical test and showed: The lunar evection anomaly has a statistically
significant influence on the earthquake distribution. See [11, p. 800-804] and
section 7 for further details.

8.2 Interdisciplinarity

Seismology, one of the main sections of geophysics, is the study of earthquakes
and the movement of vibrations through the interior of the Earth. Earthquake
forecasting and lab simulations of geological processes are topics of seismic re-
search.

In recent times biological methods are developed to predict earthquakes
and other disasters. We mention the Disaster Alert Mediation using Nature
(DAMN) program of M. Wikelski. Animal behaviour can be incorporated into
earthquake forecasting. For example, toads left the breeding colony days before
the 2009/04/06 L’Aquila Quake in central Italy.

In the present treatise the lunisolar effect on the trigger of earthquakes was
studied, critical time periods are listed in Section 5.5. Strong earthquakes hap-
pened in synodic months which begin or end with an extreme proxigean spring
tide. So a question on the DAMN research arises: can one discover a strange
behaviour of animals in these critical periods. The synodic month 2016/10/16
– 2016/11/14 is the next dangerous time with an extreme proxigean spring tide
at the end of the month.

Finally we remember of David Hilbert’s Thesis: We must know, we will
know. In the hard discipline of earthquake forecasting we must bring together
geophysics, biology, and astronomy to improve the prediction possibilities. The
determination of critical regions would be a success. We have a problem with
the determinism in the second part of Hilbert’s Thesis.
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8.3 Appendix: The 2015/09/16 Chile Quake with magni-
tude 8.3

The strong earthquake in Chile integrates into our system:

Date π = 61′+ Spring tide P-S Mag. Region

2015/08/29 F 4.8” 21
2015/09/16 8.3 Chile
2015/09/28 F 26.5” proxigean -1
2015/10/27 F 1.3” -23

Table 5a. Chile 2015

The Chile Quake happened in the high amplitude synodic month before the
2015/09/28 proxigean spring tide.
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