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Abstract: 

Methods of differential geometry are much used in geodesy and cosmology. Recently 
they have found entrance in analyzing topologically nontrivial states of quantum matter. 
An introduction is given into the basic notions. 
 

 

1. Prologue 

 

Erik Grafarend and I met for the first time in 1985, when I succeeded Prof. Ekkehard Kröner to the 
Chair for Theoretical and Applied Physics of the University of Stuttgart. In 1966, Erik had written a 
diploma thesis in physics under the guidance of Kröner at the University of Clausthal. Kröner 
obtained a call to the University of Stuttgart in 1969, and Erik followed as director of the Institute for 
Geodesics in Stuttgart in 1980. Both showed very much interest in differential geometric methods, 
which I shared. At the New Year’s reception of the rector in 2014 I reported to Erik most recent 
applications of differential and topological methods to quantum systems. He got excited and 
immediately encouraged me to give an overview at the present colloquium. Happy birthday, Erik, 
and all best wishes! 
 

2. The tangent bundle of the sphere 

A notion of differential geometry which gains more and more applications in physics is that of the 
fiber bundle1. Prominent and simple example of a fiber bundle is the tangent bundle of the 
sphere 𝑆2.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Sphere and tangent plane 
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The sphere is so smooth that at each point a tangent plane 𝑇𝑝𝑆
2 can be attached (Fig. 1). 𝑇𝑝𝑆

2 is a 

vector space. Sphere 𝑆2 plus all tangent planes form the tangent bundle 𝑇𝑆2. 𝑆2 is the basis 
manifold, the tangent planes are the fibers. A point in 𝑇𝑆2 is characterized by 

𝑝 ∈ 𝑆2, 𝑣⃗ = 𝑣1𝑒1(𝑝) + 𝑣2𝑒2(𝑝) ∈ 𝑇𝑝𝑆
2 

where {𝑒1(𝑝), 𝑒2(𝑝)} is a basis of  𝑇𝑝𝑆
2. There are many choices for bases. For the canonical basis the 

vectors  𝑒1(𝑝) and  𝑒2(𝑝)  point along the coordinate lines, e.g. the lines of latitude and longitude. 
For a vector field over the sphere, for example the currents of air or water of the Earth, out of each 
tangent plane one vector is chosen. It is then denoted “section of the bundle”.  

Tangent planes at different points 𝑝 are inclined towards each other. A comparison of vectors out 
of different tangent planes therefore needs special rules which are given by the notion of “parallel 
transport along a path”. On the sphere, and generally on all two-dimensional surfaces embedded in 
three-dimensional flat space ℝ3, two nearby vectors 𝑢⃗⃗(𝑝1) and 𝑣⃗(𝑝2) are parallel according to Levi-
Civita, when  𝑣⃗(𝑝2) is carried in ℝ3 to point  𝑝1 and then its difference to 𝑢⃗⃗(𝑝1) points along the 
surface normal. Given a path 𝑠(𝑡) on the surface, a parallel transport operator  

𝑃(𝑡 → 𝑡0):    𝑇𝑃(𝑡) → 𝑇𝑃(𝑡0), 𝑤⃗⃗⃗(𝑡) ⟼ 𝑤⃗⃗⃗(𝑡0)  

identifies parallel vectors in tangent planes at 𝑃(𝑡) and 𝑃(𝑡0) and allows the definition of a 
directional derivative for non-parallel vector fields: 

𝐷𝑢⃗⃗⃗ 𝑤⃗⃗⃗ = 𝑢
𝜆𝐷𝜆 𝑤⃗⃗⃗ = lim

𝑡→𝑡0

1

𝑡 → 𝑡0
{𝑃(𝑡 → 𝑡0)𝑤⃗⃗⃗(𝑡) − 𝑤⃗⃗⃗(𝑡0)} 

Here 𝑢⃗⃗ = 𝑢⃗⃗(𝑡0) =
𝑑𝑠

𝑑𝑡
|𝑡0 is then tangent vector to the path 𝑠(𝑡) at 𝑡0. 

The “covariant derivative” 𝐷𝜆 𝑤⃗⃗⃗ can be expressed as  

𝐷𝜆 𝑤⃗⃗⃗ = 𝑒𝜇(𝜕𝜆𝑤
𝜇 + Γ𝜈𝜆

𝜇
𝑤𝜈). 

It contains the usual partial derivative of the vector components. The “connection coefficients” Γ𝜈𝜆
𝜇

 

take regard of the fact that the basis vectors of the tangent planes are in general not parallel. The 
index 𝜆 denotes the direction of the derivative in the basis manifold, indices 𝜇 and 𝜈 act as in a matrix 

on the vector components. A vector field  𝑤⃗⃗⃗ is parallel along 𝑠(𝑡), if  𝐷𝑢⃗⃗⃗𝑤⃗⃗⃗ = 0⃗⃗. 
 

3.   Curvature 

Curvature of a manifold becomes evident, when parallel transport occurs along a closed path (Fig. 2). 
Then the parallel transported vector differs from the original one. On the sphere the difference 
consists of a rotation by the angle 

Δ𝜔 = ∫ 𝑑Ω 𝜅(𝜗, 𝜑)

 

encircled area

 

which is the integral of the Gaussian curvature over the encircled area. If one is intersecting a surface 
with a plane containing the surface normal vector, it cuts out a curve to which a circle of radius 𝑅 can 
be adapted. Of all such planes there are always two orthogonal ones with maximal and minimal 

curvature radii 𝑅1and 𝑅2, and the Gaussian curvature is defined as 𝜅 =
1

𝑅1

1

𝑅2
. 

The Gaussian curvature is the only quantity entering the curvature tensor of a two-dimensional 
surface. This tensor, which will not be explained in more detail here, can be calculated from the 

connection coefficients Γ𝜆𝜈
𝜚

 by an antisymmetrized derivative  

𝑅𝜆𝜇𝜈
𝜚

= 𝜕𝜇Γ𝜆𝜈
𝜚
− 𝜕𝜈Γ𝜆𝜇

𝜌
 

which resembles a curl. The indices 𝜇 and 𝜈 refer to derivatives along directions in the basis manifold, 
the indices 𝜚 and 𝜆 again act like matrix indices on tangent vectors. The only non-zero components of 
the curvature tensor for a two-dimensional surface are  

𝑅212
1 = −𝑅221

1 = −𝑅112
2 = 𝑅2121

2 =  𝜅 
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where 1 and 2 denote normalized coordinate basis vectors.  
Parallel transport according to Levi-Civita preserves the lengths of the vectors, hence merely 

causes rotations. Thus, for the description of parallel transport and holonomy, it suffices to attach to 
each point of the manifold not an entire tangent plane, but only the rotation group 𝑆𝑂(2) acting on 

it. For the sphere this results in the “principle bundle” (𝑆2, 𝑆𝑂(2)) = (𝑆2, 𝑆1), where 𝑆1 is the circle 

isomorphic to 𝑆𝑂(2). One has to fix the position of the unit element of 𝑆𝑂(2) on each circle. A 

change is possible and results in a “gauge transformation” of the connection coefficients Γ𝜆𝜈
𝜚

. 

 

Fig. 2 Parallel transport along a closed loop 

 

4. Fiber bundles 

Now we are ready to define a fiber bundle (𝐸,𝑀, 𝐹, 𝜋) in general. It consists of a basis manifold, to 
which at each point a fiber 𝐹𝑝 is attached. The fiber is either of a copy of a vector space 𝑉 (“vector 

bundle”) or a (gauge) group 𝐺 acting on 𝑉 (“principal bundle”). 𝜋: 𝐸 → 𝑀 is a projection such that the 
fiber 𝐹𝑝 is the inverse image 𝜋−1(𝑝) of a point 𝑝 ∈ 𝑀.  

An example is the Moebius strip with the circle 𝑆1 as basis manifold and the real line ℝ as vector 
fiber (Fig. 3). In addition prescriptions must be given for gluing the fibers together to create a twist.  
 
 
 

 

 

 

 

Fig. 3 Moebius strip 

 
For comparison of vectors in different fibers also a parallel transport can be defined with covariant 
derivative  

  𝐷𝜆 𝑤⃗⃗⃗ = 𝑒𝑖(𝜕𝜆𝑤
𝑖 + Γ𝑗𝜆

𝑖 𝑤𝑗). 

Greek indices now denote directions or tangent vectors in the basis manifold, Latin indices vector 

components in the fiber. If we write the vectors as columns of components 𝒘 = [𝑤
1

𝑤2
], the covariant 

derivative can be expressed as matrix equation  

M=S
1
 

F
p
=R 
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𝑫𝜆𝒘 = (𝜕𝜆 + 𝚪𝜆)𝒘, 

with the connection coefficient matrix  [𝚪𝜆]𝑗
𝑖 = Γ𝑗𝜆

𝑖 . 

The curvature tensor follows as 

𝑅𝑗𝜇𝜈
𝑖 = 𝜕𝜇Γ𝑗𝜈

𝑖 − 𝜕𝜈Γ𝑗𝜇
𝑖 + Γ𝑙𝜇

𝑖 Γ𝑗𝜈
𝑙 − Γ𝑙𝜈

𝑖 Γ𝑗𝜇
𝑙  

𝑹𝜇𝜈 = 𝜕𝜇𝚪𝜈 − 𝜕𝜈𝚪𝜇 + [𝚪𝜈 , 𝚪𝜇] 

The terms in red are commutators that exist only for nonabelian gauge groups.  
 

5.  Topological quantum numbers 

The theorem of Gauss-Bonnet states that the integral 

𝝌𝑬(𝑴) =
𝟏

𝟐𝝅
∫𝒅𝛀 𝜿(𝝑,𝝋)

 

𝑴

 = 𝟐 − 𝟐𝒈  

over the sphere or any closed two-dimensional surface is an integer, namely the Euler characteristic. 
𝑔 is the genus of the surface, the number of handles. An example for 𝜒𝐸(𝑀) = −4 is given in Fig. 4.  

 

Fig. 4 Surface of genus 3 and Euler characteristic -4 

 
A continuous deformation of the surface cannot change the Euler characteristic, as it is a discrete 
index. Thus the Euler characteristic serves to label those classes of surfaces which can be 
continuously transformed into each other and constitutes a topological quantum number. The 
Gauss-Bonnet theorem connects differential geometry with topology. The topological method to 
determine the Euler characteristic is by covering the surface with polygons. Then 𝜒𝐸(𝑀) is the 
number of faces plus the number of vertices minus the number of edges (Fig. 5 for the sphere). 

 

 

Fig. 5 Determination of the Euler characteristic by triangulation 
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This method is more general as it requires only a continuous manifold and not a differentiable one 
with parallel transport. Before we come to topological quantum numbers in quantum matter, we 
address some other applications of fiber bundles.  
 

6.  Applications of fiber bundles 

The tangent bundle 𝑇𝑀4 of space-time with principle bundle (𝑀4, 𝑆𝑂(1,3)) is used to describe the 

cosmos. The tangent planes are Lorentz spaces upon which the Lorentz group 𝑆𝑂(1,3) is acting.  
In special relativity one defines the canonical four-momentum  

𝑝𝜇 = [
𝐸
𝑐⁄

𝑝
] 

where 𝐸 is the energy, 𝑐 the velocity of light, and 𝑝 the standard momentum. The four-velocity is 
𝑣𝜇 = 𝑝𝜇 𝑚⁄ . In an electromagnetic field, four-velocity and canonical four-momentum are related by  

𝑣𝜇 =
1

𝑚
(𝑝𝜇 − 𝑞𝐴𝜇) 

where 𝑞 is the charge and  

𝐴𝜇=[
Φ

𝐴
] 

the four-potential with Φ the scalar and 𝐴 the vector potential. In quantum mechanics a particle is 
described by a complex wave function 𝜓(𝑟, 𝑡) ∈ ℂ, i.e. a section of a bundle (ℝ⊗ℝ3, ℂ) with space-
time ℝ⊗ℝ3 as basis manifold and the ℂ as fiber. The canonical four-momentum and four-velocity 
become differential operators  

𝑝𝜇 →
ℏ

𝑖
𝜕𝜇     and   𝑣𝜇 →

ℏ

𝑖𝑚
𝐷𝜇 , 𝐷𝜇 ≡ 𝜕𝜇 − 𝑖

𝑞

ℏ
𝐴𝜇. 

ℏ is the Planck-constant divided by 2𝜋 and 𝑖 the imaginary unit. 𝐷𝜇 serves as a covariant derivative 

and defines parallelism. The factor 𝑞 ℏ⁄  is as a rule absorbed in 𝐴𝜇 . The true wave function along a 

path is a parallel transported one, hence the solution of 𝐷𝑢⃗⃗⃗𝜓 = 0, which is 

 𝜓 = 𝜓0 exp{𝑖 ∫ 𝑑𝑥
𝜇 𝐴𝜇}. 

The exponent is purely imaginary and therefore a change of the phase. Parallel transport is 
connected with the action of the rotation group (or circle) 𝑈(1) in the complex plane; we have to 

deal with a(ℝ⊗ℝ3, 𝑈(1)) principle bundle. Whereas the connection matrix is −𝑖𝐴𝜇 (acting on the 

complex plane), the curvature is −𝑖𝐹𝜇𝜈  with the electromagnetic field tensor  

𝐹𝜇𝜈 =

[
 
 
 
 
0 −𝐸𝑥
𝐸𝑥 0

−𝐸𝑦 −𝐸𝑧
𝐵𝑧 −𝐵𝑦

𝐸𝑦 −𝐵𝑧
𝐸𝑧 𝐵𝑦

0 𝐵𝑥
−𝐵𝑥 0 ]

 
 
 
 

 

in Cartesian components.  
Similar to the Euler characteristic for a closed surface – which had been an integral over curvature – 

a topological quantum number can be associated with the electromagnetic field on a closed surface, 
also by an integral over the generalized curvature, denoted first Chern number 

𝑐ℎ(1) =
1

2𝜋
∫ 𝑑𝑥1𝑑𝑥2

closed
 submanifold

𝐹12 

𝑥1 and 𝑥2 denote the coordinates on the two-dimensional surface. This is a generalization of the 
Gauss-Bonnet theorem to fiber bundles and called Gauss-Bonnet-Chern theorem.  
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An example is a magnetic monopole of strength 𝛾. It can be described as (𝑆2, 𝑈(1)) fiber bundle 

with linear connection and curvature: 

−𝑖𝐴𝜗 = 0, −𝑖𝐴𝜑 = 𝛾𝑖(cos𝜗 − 1) ,     − 𝑖𝐹𝜗𝜑 = −𝛾𝑖 sin𝜗 

This is the Levi-Civita connection transcribed for the complex plane ℂ. Compare it with the 
connection and curvature matrices for 𝑆2 in an orthogonal basis: 

𝚪𝜗 = 0,          𝚪𝜑 = [
0 −1
1 0

]
⏟    

𝑖

(cos𝜗 − 1),         𝑹𝜗𝜑 = −[
0 −1
1 0

]
⏟    

𝑖

sin𝜗 

The matrix corresponds to the 90° rotation in ℝ2which in ℂ is performed by the imaginary unit. The 
first Chern number is  

𝑐ℎ(1) =
1

2𝜋
∫ 𝑑𝜑∫ 𝑑𝜗

𝜋

0

2𝜋

0

𝐹𝜗𝜑 = 2𝛾 

The (ℝ⊗ℝ3, 𝑈(1)) fiber bundle or gauge theory for electromagnetism has been generalized to 

nonabelian gauge theories (ℝ⊗ℝ3, 𝑈(1)⊗ 𝑆𝑈(2)) for the electroweak interaction and 

(ℝ⊗ℝ3, 𝑆𝑈(3)) for the strong interaction.  

 

7.  Topological quantum states 

Linear connection and curvature were introduced in quantum mechanics with the discovery of the 
Berry phase in adiabatic motions. We consider quantum mechanical ground states |𝑚(𝜉)⟩ which 
depend on a parameter 𝜉 out of a parameter manifold 𝑀. An example is a particle with spin 1 2⁄  in a 
magnetic field of fixed strength but varying orientation. For this case 𝜉 = (𝜗, 𝜑) are the polar angles, 

and 𝑀 is the sphere 𝑆2. Quantum mechanical states are determined up to a phase 𝑒𝑖𝛼, therefore the 

system can be described as an (𝑀,𝑈(1)) principle bundle. Assume that the states are separated 

from adjacent ones by an energy gap and that the parameter is changed adiabatically so slow, that 
the applied energy does not suffice to surmount the gap, then the system remains in the instanta-
neous states |𝑚(𝜉)⟩. However, upon completing a motion along a closed path in 𝑀 the phase will 
have changed. This holonomy can be described by a covariant derivative 𝐷𝜇 ≡ 𝜕𝜇 − 𝑖𝐴𝜇 containing 

the  

Berry connection        𝐴𝜇 = 𝑖⟨𝑚|𝜕𝜇𝑚⟩      and  

Berry curvature          𝐹𝜇𝜈 = 𝑖{⟨𝜕𝜇𝑚|𝜕𝜈𝑚⟩ − ⟨𝜕𝜈𝑚|𝜕𝜇𝑚⟩}. 

The derivatives are taken with respect to the parameter 𝜉. 
Given a curvature, a first Chern number can be calculated for a two-dimensional parameter 

manifold as above. For the spin-1 2⁄  particle we obtain the same connection coefficients and 
curvature as for the magnetic monopole, only 𝛾 being replaced by 1 2⁄ . 

 

8.  The quantum Hall effect 

The first topological quantum state was discovered by von Klitzing in 1980 in the quantum Hall 
effect2. There, a crystalline semiconductor layer forming a two-dimensional electron gas is placed 
into a perpendicular magnetic field 𝐵𝑧 (Fig. 6). 

The charge carriers of a current 𝑗𝑥 are deflected by the magnetic field and cause a transversal 
electric field 𝐸𝑦. Current and field are related by the Hall conductivity 𝜎𝑥𝑦: 𝑗𝑥 = 𝜎𝑥𝑦𝐸𝑦. The Hall 

conductivity turned out to be  

𝜎𝑥𝑦 =
𝑒2

ℎ
𝑛 
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where 𝑒 is the charge of the electron, ℎ Planck’s constant and 𝑛 an integer which changed with the 
strength of the magnetic field.  

 

 

 

 

 

 

 

 

Fig. 6 Configuration for the quantum Hall effect 

Two years later the quantized nature of the Hall conductivity was explained in a famous paper by 
Thouless, Kohmoto, Nightingale and den Nijs3. The system is periodic in two directions, therefore the 

quantum states |𝑢(𝑘⃗⃗)⟩ are labeled by a wave vector 𝑘⃗⃗=(𝑘1, 𝑘2). The wave vector space is also 

periodic: 𝑘⃗⃗ ∈ ℝ2mod (𝐾⃗⃗⃗1, 𝐾⃗⃗⃗2), and thus forms a torus 𝑇2(Fig. 7). 

 
 
 

 
 
 
 
 

Fig. 7 A periodic wave vector space is equivalent to a torus 

  
The Kubo transport equation for the Hall conductivity is  

𝜎𝑥𝑦 =
𝑒2

ℎ
∑

1

2𝜋
occupied bands

∫ 𝑑2

torus

𝑘⃗⃗ 𝑖{⟨𝜕1𝑢|𝜕2𝑢⟩ − ⟨𝜕2𝑢|𝜕1𝑢⟩} 

The expression in the curly brace is exactly the Berry curvature, and hence the integers in the Hall 
conductivity are a sum of Chern numbers: 

𝜎𝑥𝑦 =
𝑒2

ℎ
∑ ch(1)

occupied bands

(𝑇2, 𝑈(1)) 

 
 

E
y
 

j
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9.  The spin quantum Hall effect  

Continuous deformations may perturb spatial symmetries, for example cubic symmetry of a crystal. 
But there are extremely generic symmetries that may persist, for example time-reversal or particle 
hole symmetries. These impose restrictions on the topological quantum numbers. Time reversal 

symmetry transforms a state at wavevector 𝑘⃗⃗ to one at wavevector −𝑘⃗⃗, hence on the torus these 
points must be identified. This action modifies the basis manifold and requires new methods for the 
determination of topological quantum numbers, like twisted K-theory.  

An example is the spin quantum Hall effect4. It occurs in isolators with large spin-orbit coupling. 
The role of the magnetic field is taken by the electron spin. The classification is not any more by 
integers ℤ but by ℤ2 = ℤ mod 2. It has been predicted and observed in two-dimensional HgTe/CdTe 
quantum well structures and three-dimensional Bi1-xSbx crystals. The systems are isolators in the bulk 
but show exotic metallic spin polarized currents on the boundaries.  
 

10.  Summary 

Up to 1980 quantum numbers were based on symmetry only, denoting irreducible represenations. 
Symmetries are easy to break, which causes lifting of degeneracies. The explanation of the quantum 
Hall effect, which was discovered in 1980, required the introduction of topological quantum 
numbers. These describe new physical phenomena, like exotic electronic states on the surfaces of 
topological isolators. They are invariant towards deformations of the band structure and hence 
extremely robust. They are realized by Chern numbers of  fiber bundles with abstract curvatures. 
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