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Summation of series and an approximation of Legendre functions
in constructing integral kernels for the exterior of an ellipsoid:
Application to boundary value problems in physical geodesy

Abstract:

Integral kernels are an important tool used in solving boundary value problems. The paper primarily
concerns physical geodesy applications and thus problems associated with Laplace’s and Poisson’s
partial differential equation that offer a natural basis for gravity field studies. In the introduction a
brief review is given on Green’s function constructed for Stokes’ and Neumann’s problem formulated
for the exterior of a sphere. The second of the problems is considered also within the weak solution
concept. Galerkin elements are expressed for the special case when the function basis is generated by
the respective reproducing kernel or represented by reciprocal distances (elementary potentials). The
solution domain is then generalized and the paper focuses on the construction of the reproducing
kernel of Hilbert’s space of functions harmonic in the exterior of an oblate ellipsoid of revolution. In
the first stage the kernel is represented by a series of ellipsoidal harmonics. However, the manipula-
tion with the series and a numerical implementation of the integral kernel is rather demanding in this
case, in particular for a high resolution modeling of the solution. This stimulates studies towards an
analytical summation of the series representing the kernel. In solving this problem some approxima-
tions of Legendre functions of the second kind are used. Two alternatives are discussed. The first ap-
proach is based on the solution of an approximation version of Legendre’s ordinary differential equa-
tion (limit layer approach). In the second alternative the Legendre functions are approximately repre-
sented by hypergeometric functions and series. In both the cases the integral kernel is split into parts
given by series of Legendre functions of the first kind. The use of Legendre elliptic integrals for their
summation is pointed out. The results based on the above two alternatives applied for the approxi-
mation representation of the Legendre functions of the second kind are discussed.

1. Introduction

In geodesy we are dealing with a number of interesting boundary value problems of mathematical
physics. We usually work in a system of Cartesian coordinates X;, X,, X; such that its origin is in the
center of gravity of the Earth and its X; axes coincides with the rotation axes of the Earth. We follow
a classical or weak solution concept and often use an integral representation of the solution, Green’s
function method or also Galerkin approximations of the solution. Traditionally and very often solution
methods applied in this area rest on a mathematical apparatus that actually was developed for a
spherical boundary.

A classical example is the famous Stokes function G(X, y). It is associated with the problem to find
a function T such that

i+3T:ffor|x|=R and AT =g for [X| >R, (1)
o|x| R
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where R >0 is a constant, |X| = ()(12 + X22 + X§) and A means Laplace’s differential operator. Apart
from the first degree harmonics T,(X) the function G(X,Yy) enables to write the solution of the
problem in the following form

=T --= [ G F(NdS--= [ Bxa)dy . @

Zlyi=r Tlyi>R
where d,S is an element of surface at the point y and dy = dy,dy,dy, means the volume ele-

ment. For the exterior of the sphere of radius R Stokes’ function can even be expressed in a closed
form. We have

1 R_1 ,RIX-y|

G(le): +— —
I x=y| [X]|X=y] |x]ly]
RS 1 R? X ©
i A 5+3In—(1— COS"”+|X_V|] ,
| X[y 2 | X[yl |y

where X = (R2/| X |?) X and y is the angle between the position vectors X and Y, see (Holota,
1985, 1995, 2003b, 2014).

Remark 1. G(X,Y) above is a more general in comparison with Stokes’ function usually applied
in physical geodesy, see e.g. (Heiskanen and Moritz, 1967), (Moritz, 1980) and (Hofmann-Wellenhof
and Moritz, 2005). It enables to solve the geodetic boundary value problem not only for Laplace’s
equation but also for Poissons’ partial differential equation.

Another example is Neumann’s function N(X,Y). It is associated with the problem to find T
such that

%:ffor|x|=R and AT =g for [X| >R . (4)
X

Equally as above we also have a closed form expression of this function

1 R 1 1 |X—y|+|XI-lylcosy

N(x,y) = -
I x=yl Ix[IX=y| R | y[(1-cosy)

®)

see (Holota, 2003b, 2004). In physical geodesy now its restrictions for | Y |=R orfor | X| =|y|=R
are often applied. In particular for | y|=R, it is obvious that N = N(X,) and we easily deduce
that

2 £|n|x—y|+R—|x|c051//

= - (6)
|x-yl R | x| (1-cosy)
cf. (Pick et al., 1973) or (Holota, 2003b). In the case that | X| =| Y| =R, we even have
N = N(w) :1 _ 1 _|n1+_sm(1,///2) | @)
R|sin(y/2) sin(y/2)

see (Hotine, 1969), (Pick et al.,1973), (Holota, 2003b) and (Hoffmann-Wellenhof and Moritz, 2005).

In geodesy kernel functions have their position also within the concept of the weak solution of
boundary value problems. Good example is the reproducing kernel. Nevertheless, its construction
corresponds not only to the geometry of the solution domain, but also to the scalar product associ-
ated with the respective Hilbert space of functions.
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Consider e.g. Hilbert’s space Hél) (Sg) of functions harmonic in the exterior of the sphere of ra-
dius R which is equipped with the following scalar product (u,v), = A(Uu,V), where

A(u,v) =

f iuﬂd (8)

|15

One can show that there exists a function K(X, y) such that

3
Z 8K(X y) GV(X) dx = v(y) holdsforall veH(Sy) ©)

i=1 Sk | |

and that in this case

2
KO == Y 207 p cosy) | 2=t
4R & Nl X1y

(10)

where P, is the usual Legendre polynomial of degree N, see (Holota, 2004). Moreover, it is not ex-

tremely difficult to find that
1 (22 L+z—cos
(——In—l//J (11)

K(X,y)=——
(*x.¥) 47zR\ L 1-cosy

where L:\/1—22 COS(//+Z2 , see also (Tscherning, 1975), (Neyman, 1979) and (Holota, 2004).
The advantage of using the kernel function K(X,Y) can be seen from the construction of Galerkin
approximations to the solution of Neumann’s problem for Laplace’s equation.

Recall, therefore, that in this case we are looking for U such that

Au=0in Sy and Z—E=—fon88R, (12)

where 0/0n denotes the derivative in the direction of the unit (outer) normal N of 0S;.
In the numerical solution the function U is approximated by the linear combination

n
Uy = v, , (13)

where V; are members of a function basis of Hél) (SR) . The coefficients an) can be obtained from

the respective Galerkin system

Zc(”)A(vJ,vk) = Ivk fdS, k=1,...n, (14)
35,
where
3 OV oV
A(v.,v,) = —J 2 Kdx , 15
(V;. %) ;iaxiaxi (15)

see (Necas, 1967), (Michlin, 1964), (Rektorys, 1974), (Holota, 1997, 2004, 2005, 2011). Putting now
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V;(X) =K(Xx,Y;) , (16)
we can immediately deduce that in our Galerkin system the elements A(VJ- ,V, ) are given by
AV Vi) =KUY Y (17)

which results from the reproducing property of the kernel, see (Holota, 2004).

The advantage of using the function K(X,Yy) definitely attracts attention. Nevertheless, in con-
structing Galerkin approximations it is tempting to generate basis functions also in a different way.
Often elementary potentials are used for this purpose, which means that we put

Vi(X) = — . (18)

In this case one can show that the diagonal elements are given by

2R 1 . R+ly;l
5 >+ In
R—=1y;| ly; I R=1y;l

A(v;,v,)=7 ) (19)

see (Holota, 2000). Concerning the off diagonal elements, however, the computation is more labori-
ous. In particular, we have to use a series representation of V; (x),ie.,

|n

= |y
vi(x)=2 —
n:O|X

o P, (cos z//j) , (20)

where Wi is the angle between the position vectors X and Y, see eg. (Heiskanen and Moritz,
1967) or (Hofmann-Wellenhof and Moritz, 2005). This enables us to get

A(vj,vk)=2—”Zz”Pn(cosn//jk)+4—”S ) (21)
R < R

where /;, is the angle between the position vectors y; and Y,

M
z:JR—zk (22)
and
S=§] 2P (cosy;) , (23)
~2n+1 !

Here, however, we are faced by the problem to sum the series on the right hand side of Eq. (23) or
find a closed expression for the off diagonal element A(VJ- .V, ). What we get is

A(Vj’Vk): 2r +4_7TS ’ (24)

R\jl—Zz cosy , +2°
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where
1
S dz (25)

1
Jz \/2(1—220051//“( + 22)
is an elliptic integral, see (Holota, 1999) and (Holota and Nesvadba, 2014).

2. Transition to an ellipsoid of revolution

In the introduction we saw that the mathematical apparatus related to the exterior of the sphere is
fairly developed and transparent. Seemingly, this has an advantage. However, a sphere is rather far
the shape of the Earth, which has a negative effect on any attempt to reach the solution of the
boundary value problem formulated for the real surface of the Earth by means of an iteration proce-
dure. Therefore, our aim is to discuss the construction of the mathematical apparatus for the exterior
£2,, of an oblate ellipsoid of revolution. This leads us to an attempt to construct an analogue to
K(X,Y), i.e. the reproducing kernel K, (X, y) for Hilbert’s space Hél) (£2,,) of functions harmon-

icin L2, which is equipped with scalar product (u,v); = A(U,V), where

3, ¢ 0u ov
A(u,v) = ——dx . (26)
iZ:I;!:)[II axl 6XI

A note motivating interest in ellipsoidal reproducing kernels can be found also in (Tscherning, 2004).
We will suppose that @ and b, a>Db, are the semi-axes of the oblate ellipsoid of revolution and
will consider the ellipsoidal coordinates U, f, A related to Xy, X,, X3 by the equations

X, =+ U+ E2 COSBCOSA , X, =\ U*+E%cosfisinid , x;=using , (27)

where E =+/a?—b? denotes the linear eccentricity, see e.g. Heiskanen and Moritz (1967). Clearly,
the boundary 02, is then defined by u=D.

Going now back to K, (X, Y), and referring to (Holota, 2004, 2011) and (Holota and Nesvadba,
2014), we can write immediately that

Kan (%) = 7 2 (204D Kooy, P 6INB P, (SN, +
n=0

(28)
& (n—m)! _ |
+2 mzﬂm Koy Pan (SINB,) P (SiNB, ) cOSM(4,— 4,) |
with
- -1
Knmxy = IEzb Qnm (ZX) Qnm(zy)|: 1 dQnm(ZO):| ’ (29)
a Qnm(zo) Qnm (ZO) Qnm(zo) dz

where P, and Q,, are associated Legendre functions of the first and the second kind, respectively;
while

iu iu ib .
z,=—%, 7z, =—L Z,=— and I:a/—l. (30)
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The problem, however, is the summation of the series that represents the kernel K, (X, y) . Never-
theless, inspecting the structure of the coefficients K., we can find a stimulus to use the limit
layer theory as discussed in (Sona,1995) or (Sanso and Sona, 2001) and also analyzed in Holota

(2003c).

3. Approximation - limit layer theory

As it is known

Qnm(z) ( uj 1(- bj
_ _ u 2 31
Vnm (u) Qnm (ZO) Qnm I E Qnm I E ( )
is a solution of
d?v dv E’m?
(u>+E?) du';m +2u d&m _{n(”ﬂ)_m}%m:o , (32)

which can be shown to be equivalent to Legendre’s equation by using the pure imaginary variable
z=iu/E. This equation has two solutions: Legendre’s function of the first kind P,,, and Legendre’s
function of the second kind Q,,,. Recall that in our case when dealing when with harmonic functions
in an unbounded solution domain the function Q,,,, is the suitable solution.

As in (Sona, 1995), in the sequel we will work with the variable S=u/b. It is thus obvious that

Vo (U) =V, (Sb) =V(S) and that for the function V Legendre’s equation transforms into

d?v dv e’m?
(s*+e’)—+2s——|n(n+)———— |v=0, (33)
ds ds s“+e
where €2 = Ez/a2 . Now, confining ourselves to S € (1, Smax> , where S is an upper bound for S,
such that
e’s?~e? and (s?+e’)t~ (1+e)? (34)

can be taken for admissible approximations, we can simplify the equation above. It transforms into

2 2,.,2
(1+e2)52%+2$Z—?—{n(n+l)—f+r22}W=O : (35)

The solution W(S) obviously differs from V(S) . Following (Sona, 1995) again, we have

Ly (36)

S

w(s) =

where A is a constant and & has to be one of the two roots, a,~—Nand a, = n+1, of the quad-
ratic equation

eZmZ

1+e?

(1+e?)a?—(1-e*)a—n(n+1) + 0. (37)

Clearly, «, is the suitable solution in our case and we obtain



P. Holota Leibniz Online, Jg. 2015, Nr. 19

Summation of series and an approximation of Legendre functions ... S.7v. 12
1 n+1)(n+2)+m?
w(s)=——, ¢ _ez (1N +2) , (38)
S 2n+1

where A has been fixed so that W(1) =1. Note in particular that V(S) =w(Ss) =1 for s=1.
As regards the differenced of the two solutions (i.e. V and W) it has been estimated by means of
Gronwall’s inequality in Holota (2003c).

4. Coefficients in the expansion of K, (X,Y)

Within the limit layer theory, we can write approximately that

) 1] (2)", Gue)_ (1) (0 N
Qnm(zo) b u, Qnm(zo) b uy

and subsequently derive that

1 dQu(z) _ Edw(l) iE

~ 1—
Qun(zy)  dz ib ds b (n+l-¢), (40)

which holds, but again with some accuracy only, see (Holota, 2011).
Nevertheless, keeping the accuracy up to terms multiplied by e?, we can substantially modify the
right hand side of Eq. (40). We obtain

1 dQu(z) _
Qnm (ZO) dZ

(41)

£ g1, £ 0000

ab (n+1)(2n+1)

Thusin K, (X, y) given by Eq. (28) we will have

5 n+l-¢ 2 n+l 5
K ~ |2 K. = b l-¢In b K, (42)
nmxy "~ nm =~ - nm/
uxuy UXUy UXUy

see e.g. (Cufik, 1944), with

(43)

Knm -

1], B (+(n-1)-m’
n+l|  ab (n+)@2n+1) |

Moreover, denoting by i the angular distance of points (ﬂx,/l ) and (ﬁ A,) on a sphere, when
P and A are interpreted as spherical latitude and longitude, respectlvely and using the well-known
Legendre addition theorem, we can deduce that

2
Ky (X, y) ~ KO (x,y) K(2><x y)+—— KO (x,y) -
47h 4Arab? Arrab?

2 2 2 2 (44)
E : L K@ (x,y)+ E : 2" K®(x,y)
4rah|  Ugly Arab| Uy,

with
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1
@ 2n+1 b2 "
KO(x,y)= Z -l P, (cosy) , (45)
Y
b2 n+l
K®(x,y)= Zml( J P,(cosy) , (46)
K(3)(X y) _ i 1 b2 n+1 a2 Pn (COS l//) )
’ S (n+1)% | uu, oL
- b2 n+1
K@ (x, y)=Z(n+2)[u ] P, (cosy) (48)
n=0 XUy
and
1 (02 ) 8P (cosy)
K®(x, n\CSY) 49
(x.y)= Zn+1{ J o) )

where A means A, or /1y . The terms containing the derivative of P, with respectto A resulted from
the dependence of x,,, on the index M and from the use of Legendre’s adition theorem twice differ-
entiated with respect to A, or /1y in treating the summation of the series on the right hand side of Eq.

(28), cf. (Holota, 2003a).

5. Coefficients in K, (X, Y) - an alternative concept of approximation

In our approach we so far used an exact solution of an approximate differential equation. Let us try
now to change this philosophy and work with an approximate solution of an exact differential equa-
tion. In this case we first recall that

Q. (2) = (_1) "nl(n+m)! (22 )— I:(n+m+1 n-m+1 2n+3 1 2)’ (50)

(2n+1)! 2> T 2 T2 1

where F is a hypergeometric function, see (Bateman and Erdélyi, 1953) or (Hobson, 1931) and that,
passing to hypergeometric series,

FZ:F(’ j Z(a) 2 (D) ( 12j” (51)

(c),n! \1-z
with (a), =a(a+1)...(a+n-1), n=123... [similarly for (b), and (C),]. After elementary
modifications we have

2 2
F—F + ab( 1 12 N a(@a+1)b(+1) ( 12)_ 12 e (52)
° 1-2° 1—z0 2c(c+1) 1-z 1-2

see (Holota and Nesvadba, 2014). Thus, e.g., in a 20km layer close above the ellipsoid
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L 1 < e*-0,000046 (53)
1-z° 1-1z;
and
2 2
1 1 6
5| =| = | < 2¢°=0,0000006 (54)
1-z 1-z5

etc. In the sequel, therefore, considering these estimates, we can approximately put

Qnm(zx) Qnm(zy) ~ pn+1

~ , (55)
Qun (20) Qun (o)

where
1-7; a’
\/1—25\/1—23 \/ﬂuf+E2\/u§+E2
see (Holota and Nesvadba, 2014). Similarly recalling that
dQ (n+1) z n—-m+1
@ 12 Mg o &
see (Kratzer and Franz, 1960) and putting
Qn+1,m(20) - n+m+1E (58)
Qun(z,)  2n+3 ia’
see (Holota, 2011), we arrive at
2 2 2
L Owz) B gy E° (D mm | (59)
Qum(z,) dz a ab (n+1)(2n+3)
Hence
1 E? (n+1)>2*-m?
K ~ p" i with K,.=—|1-—— |, 60
oy = £ o ™= Nr1|T ab (n+1)(2n+3) (60)

see (Holota and Nesvadba, 2014).

Now we return to the reproducing kernel K (X, Y) . Denoting again by ¥ the angular distance
of points (B, 4,) and (B,,4,) on a sphere, when S and A are interpreted as spherical latitude
and longitude, respectively, we can deduce that

2
47ab?

1
Kai (x,y) = ——-K®(x,y) -

E
— —K®@(x,y)+
47b 47ab? (x.¥)

K®(x,y) (61)
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with
— 2Nn+1
KO(x,y)= Y 50 p™P, (cosy) (62
— h+1
— 2n+1
K@(x,y)=> ——= p"™P (cos 63
(X, Y) nZ;;Zn+3'O (Cosy) (63)
and
© 2
~ (n+1)%(2n+3) )

where A means A, or /1y . Note also that similarly as in the last section Legendre’s addition theorem
and its second derivative with respect to A have been used in deriving the terms K(l)(x, y),
K®@(x,y) and K®(x,y), see (Holota and Nesvadba, 2014).

6. Concluding remarks

The concepts applied for the approximation computation of the coefficients Knmxy in Sections 4 and 5
differs. Details concerning the summation of the series in Eqs (62) - (64) are discussed in (Holota and
Nesvadba, 2014) and also in (Holota, 2014). Therefore, we will confine ourselves just to the results. The
right hand side of Eq. (62) has the same structure as the series in Eq. (10). Here the summation of
K®(x,y) is not a problem. However, for the K (x,y) and K& (X, y) term the summation of the
series in Egs (63) and (64) is somewhat more complex. In particular the derivation of closed formulas
for KD (x,y) and K®(x,y) involves the use of Legendre elliptic integrals of the first and the sec-
ond kind, see (Holota and Nesvadba, 2014) and (Holota, 2014). In addition in (Holota and Nesvadba,
2014) the difference between K, (X, Y) given by Eq. (28) and its approximation represented by Eqs
(61) - (64) was subjected extensive numerical tests.

In contrast the results obtained in Section 4 and especially the structure of the series in Egs (46) -
(49) have a somewhat different nature. As already mentioned in Section 4 the difference between
the function V(S) and its approximation W(S) based on the limit layer theory was estimated by
means of Gronwall’s inequality in (Holota, 2003c). This confirmed that in £2,, the approximation is
acceptable in a close neighborhood of the boundary 0¢2,,. Note, however, that the question con-
cerning a similar estimate valid for the difference between the first derivatives of these two functions
was (though considered) not fully answered so far.

Nevertheless, it is worth mentioning that in Section 4 the analytical summation leading to the
closed form representation of K(n)(X, y), n=2,...,5, does not need the use of special tools. One
can show that the series in Eqgs (46) - (49) are summable without the use of elliptic integrals. This is
an interesting finding and definitely also a stimulus for research. The problem will be further dis-
cussed in the next paper on this topic.

Finally, note that there exists a rather extensive literature dealing with the implementation of the
global flattening of the Earth into the mathematical apparatus used for the solution of geodetic
boundary value problems in gravity field studies. An excerpt from this literature can be found in
(Holota and Nesvadba, 2014). It contains also numerous references to works by Prof. Erik W. Grafar-
end to whom this contribution is dedicated.
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