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Abstract

The global gravity field of the Earth and other bodies are commonly modelled as
series expansions in terms of spherical harmonics which allow an easy computation
of the gravitational potential and its functionals. Nevertheless, measured terres-
trial and airborne gravity data are usually reduced to a rotating reference ellipsoid,
i.e. a spheroid. Thus, oblate ellipsoidal harmonics are much more appropriate than
spherical harmonics. Consequently, the computation of the high resolution state-
of-the-art combined global gravity field model EGM2008 was performed on the
basis of ellipsoidal base functions. The main problem in working with ellipsoidal
harmonics, however, is that the evaluation of the associated Legendre functions of
the second kind requires the computation of the hypergeometric Gauss functions.
In this paper, suitable transformations between ellipsoidal and spherical harmonics
are reviewed, as well as renormalization methods that have been developed in the
last years. Furthermore, gravity field modelling in terms of spherical (radial) base
functions has long been proposed as an alternative to the classical spherical har-
monic expansion and is nowadays successfully used in regional or local applications.
Here we extend the regional approach and address the multi-resolution represen-
tation (MRR) in terms of spheroidal base functions, namely scaling and wavelet
functions. The MRR can be applied for both the decomposition of the gravitational
field in its spectral components and for the spectral combination of measurements
from various observation techniques.
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1 Introduction

The determination and the representation of the gravitational field of the Earth
and planetary bodies are some of the most important topics of physical geodesy.
In the first-order approximation the Earth is seen as a sphere, whose gravita-
tional force acts in the radial direction from the surface. In geodesy, such fields
are commonly approximated with spherical harmonics, which are suitable for pro-
cessing satellite gravity data acquired from a moderate distance from the Earth.
Although new high-accuracy technologies, such as satellite gravity gradiometry,
open again the question of the spherical approximation even for satellites (Rum-
mel et al., 2011), the importance of non-spherical methods lies in terrestrial or
near-terrestrial (airborne) data processing. For the flattened Earth a spheroidal
approximation (in geodesy usually called ellipsoidal), that can be accompanied
with spheroidal harmonics, seems to be most appropriate for expressing any quan-
tity located at or near a flattened ellipsoid (Martinec and Grafarend, 1997) and
(Grafarend et al., 2006). For example, the geoid height deviates up to 100 m
directly about the surface of the reference ellipsoid.

The representation of the gravity field of the Earth in terms of spherical or
spheroidal harmonics is only appropriate if the input data are distributed ho-
mogeneously over the globe and of similar accuracy. As is evident from the devel-
opment of EGM2008 (Pavlis et al., 2012) especially terrestrial and airborne mea-
surements are only available in specific regions and are far from being globally
distributed. Also radar altimeter measurements do not have a global distribution
as they are only given over the oceans. Consequently, the second part of the paper
focuses on the inhomogeneous structure of the Earth’s gravity field and on the
heterogeneous distribution of the input data. The multi-resolution representation
(MRR), also known as multi-scale analysis (MSA), is an appropriate candidate
for combining measurements from observation techniques of different spatial and
spectral resolutions (see e.g. Haagmans et al. (2002)). In the last decades several
approaches were pursued to generate a MRR of the gravitational potential by
means of spherical (radial) base functions. To be more specific, the application
of the wavelet transform allows the decomposition of a given data set into a cer-
tain number of frequency-dependent detail signals (see e.g. Freeden et al. (1998),
Freeden (1999), Freeden and Michel (2012), Schmidt et al. (2007), Schmidt et al.
(2007), Schmidt and Fabert (2008)).

As mentioned before the spheroid means a better approximation of the Earth
than a sphere. Consequently, we discuss the basic features of ellipsoidal wavelet
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theory to model the Earth’s gravitational potential in Section 3. As in the case of
ellipsoidal harmonics the associated Legendre functions of second kind have to be
computed efficiently for setting up the ellipsoidal scaling and wavelet functions.
The paper is concluded with some final remarks in Section 4.

Fig. 1. Definition of spheroidal and spherical coordinates; the origin of the coordi-
nate system coincides with the Earth’s center of mass; the radius v is defined as
v =
√
u2 + E2.

2 Global Representations of the Gravitational Potential

We start with Fig. 1 which shows the position of a point P expressed both with
the spherical (r, θ, λ) and the spheroidal set of coordinates (u, ϑ, λ). These two
kinds of curvilinear coordinates are related to the geocentric Cartesian coordinates
(x, y, z) by

x=
√
u2 + E2 sinϑ cosλ = r sin θ cosλ,

y=
√
u2 + E2 sinϑ sinλ = r sin θ sinλ, (1)

z=u cosϑ = r cos θ,

where r and u are the length of the geocentric radius and the semi-minor axis,
respectively, E is the linear eccentricity with E =

√
a2 − b2 and a the semi-major

axis. The angles θ and ϑ are the co-latitudes related to the sphere with radius
r through P and to the sphere bounding the u−ellipsoid with v =

√
u2 + E2 as

shown in Fig. 1. The longitude λ is common for both kinds of coordinates (Thong
and Grafarend, 1989).
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In these coordinates the Laplace equation ∆V = 0 can be solved by the sepa-
ration of variables so that the gravitational potential V can be expressed with
spherical and spheroidal harmonic functions. Generally, the global basis func-
tions are well suited for problems with a global coverage with data. However, for
local refinements these global representations can be accompanied with a more
localized representation discussed in the Section 3 of this paper.

2.1 Spherical Setting

The gravitational potential V expressed in terms of spherical harmonics reads

V (r, θ, λ) =
GM

R

∞∑
n=0

n∑
m=0

(
R

r

)n+1 (
C
s

n,m cosmλ+ S
s

n,m sinmλ
)
P n,m(cos θ) (2)

(Heiskanen and Moritz, 1967), where GM denotes the geocentric gravitational
constant with the gravitational constant G and total mass M of the Earth, R is
the semi-major axis of the reference ellipsoid (or radius of the bounding sphere
ΩR), (r, θ, λ) is the set of geocentric coordinates, and P n,m(cos θ) are the fully
normalized associated Legendre function of the 1st kind of degree n and order m.
For numerical investigations we have to replace the infinity symbol ’∞’ for the
summation over n by a finite value nmax of the spherical harmonic coefficients
C
s
n,m, S

s
n,m. This maximum value governs both the spectral and the spatial reso-

lution of the representation of the potential V .

Defining the surface spherical harmonics

Yn,m(θ, λ) := P n,|m|(cos θ)

 cosmλ ∀ m ≥ 0

sin |m|λ ∀ m < 0

 , (3)

and the coefficients V s
n,m := GM

R
· Cs

n,|m| for m ≥ 0 and V s
n,m := GM

R
· Ssn,|m| for

m < 0 Eq. (2) can be rewritten in the more compact form

V (r, θ, λ) =
∞∑
n=0

n∑
m=−n

(
R

r

)n+1

V s
n,m Yn,m(θ, λ) . (4)

Introducing the spherical Poisson kernel

Ks(r, θ, λ, R, θ′, λ′) =
∞∑
n=0

(2n+ 1)
(
R

r

)n+1

Pn(cosψ) (5)

the gravitational potential V reads

V (r, θ, λ) =
1

SR

∫
ΩR

Ks(r, θ, λ, R, θ′, λ′) V (R, θ′, λ′) dΩR , (6)

4



where Pn are the Legendre polynomials of degree n depending on the spherical
distance ψ between the points (θ, λ) and (θ′, λ′) on the unit sphere. In Eq. (6)
SR = areaΩR = 4π ·R2 means the total area of the sphere ΩR with radius R (cf.
Fig. 1); the associated surface element dΩR is given as dΩR = R2 sin θ dθ dλ. Note,
the spherical Poisson kernel (5) can be represented in a closed form (Heiskanen
and Moritz, 1967).

2.2 Ellipsoidal Setting

Similarly for the oblate ellipsoidal domain, we obtain the spheroidal approxima-
tion of V

V (u, ϑ, λ) =
GM

R

∞∑
n=0

n∑
m=0

Qn,m(i u
E

)

Qn,m(i b
E

)

(
C
e

n,m cosmλ+ S
e

n,m sinmλ
)
P n,m(cosϑ) (7)

(Heiskanen and Moritz, 1967), where i2 = −1. The position is given now by the
ellipsoidal harmonic coordinates (u, ϑ, λ) with u being the semi-minor axis. The
b−ellipsoid, denoted as ΣR,b, and the u−ellipsoid ΣRu,u are con-focal so that they
share the same value of the linear eccentricity E2 = R2 − b2 = R2

u − u2. The
attenuation of V with increasing altitude is now governed by the ratio of the
associated Legendre functions of the 2nd kind Qn,m.

As can be seen Eqs. (2) and (7) have nearly the same structure so that a rigorous
two-way transformation between C

e

n,m, S
e

n,m and C
s

n,m, S
s

n,m can be formulated.
This was first outlined in Hotine (1969) and further developed in Jekeli (1981,
1988). The transformation can be done for all degrees and for a certain degree n
the transformation is defined as a linear combination of lower-degree coefficients.
For example for the b−ellipsoid ΣR,b and the sphere ΩR the transformation reads

vsn,m

∣∣∣∣
R

=
w∑
p=0

Λn,m,p

(
E
R

)
Sn−2p,m

(
b
E

)ven,m∣∣∣∣
b

(8)

with w the integer part of n−m
2

, i.e. w = bn−m
2
c and

Λn,m,p =
(−1)p(n− p)!(2n− 4p + 1)!

p!(n− 2p)!(2n− 2p + 1)!

(
E

R

)2p
√

(2n− 4p + 1)(n−m)!(n + m)!

(2n + 1)(n− 2p−m)!(n− 2p + m)!

where Λn,m,0 = 1 for all n,m. In Eq. (8) the functions Sn−2p,m are called Jekeli’s
functions (Sebera et al., 2012); they are equal to Qn,m up to additional degree
and order functions. Jekeli’s functions can be used for both Eq. (7) and Eq. (8)
and they are defined as

Sn,m

(
u

E

)
=

(
R
E

)n+1
in+1(2n+ 1)!

2nn!

√
εm

(2n+ 1)(n−m)!(n+m)!
Qn,m(z),
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Fig. 2. Sn,m functions according to Eq. (11) in log10 scale for different values of the
flattening f (left panel is for the Earth with f = 0.33%).

where Qn,m =
√

(2n+1)(n−m)!
εm(n+m)!

Qn,m (Jekeli, 1988); note, that εm = 1 for m = 0 and

εm = 1/2 for m 6= 0.

Furthermore, together with the standard definitions of Qn,m (Hobson, 1931) we
can expand Jekeli’s function as the hypergeometric series

Sn,m

(
u

E

)
=

(
1 +

E2

u2

)m
2 (R

u

)n+1

2F1

(
n+m+ 2

2
,
n+m+ 1

2
, n+

3

2
,−E

2

u2

)
(9)

(Jekeli, 1988) with the Gauss hypergeometric function 2F1 defined as

2F1(α, β, γ, δ) =
∞∑
k=0

(α)k(β)k
(γ)k

δk

k!
(10)

(Abramowitz et al., 1965, p. 556), where (x)k = Γ(x+k)
Γ(x)

= (x+k−1)!
(x−1)!

is the so-called
Pochhammer symbol, Γ is the Gamma function and k means the integer index
of the hypergeometric series. How fast the series (10) converges depends on the
relative size of the entries α, β, γ and δ.

Equation (9) can further be optimized for high-degree computations by an ap-
propriate transformation of the hypergeometric series 2F1

Sn,m

(
u

E

)
=

(
R√

u2 + E2

)n+1

2F1

(
n+m+ 1

2
,
n−m+ 1

2
, n+

3

2
,

E2

u2 + E2

)
(11)
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(Sebera et al., 2015). The function Eq. (11) is plotted in Fig. 2 for three different
values of the flattening f . The left panel holds for f = 0.33% close to the flatten-
ing of the Earth while the two other panels show the Sn,m for f = 3.3% (middle
panel) and f = 33% (right panel). We see that Sn,m has the same appearance for
all f and differs in magnitude only.

As we calculate Sn,m via the hypergeometric series, it is useful to see the num-
ber of terms involved in the summation (the hypergeometric series is infinite
by definition). This is plotted in Fig. 3, where we see that for a relatively low-
flattened body and maximum degree 1000 only a few terms are needed (up to 30)
to compute Sn,m up to numerical precision of 10−16. However, for more flattened
bodies many more terms are needed (hundreds) to reach numerical precision,
which increases computational costs. For such bodies the recurrences, instead of
the hypergeometric formulation, will likely be more advantageous. By comparing
the Figs. 2 and 3 one might suspect a close correlation correlation of the magni-
tude of Sn,m with the number of involved terms. Note, however, that this is just
a coincidence and not true for other definitions of Sn,m (compare with plots in
Sebera et al., 2012 that are based on a different form of Sn,m).

Fig. 3. Number of terms employed in Eq. (10) in order to get Sn,m with numerical
precision for different values of the flattening (all plots have linear scale).

The Poisson integral equation related to the (reference) ellipsoid ΣR,b with semi-
minor axis b and linear eccentricity E =

√
R2 − b2 as shown in Fig. 1 reads

V (u, ϑ, λ) =
1

SR,b

∫
ΣR,b

Ke(u, ϑ, λ, b, ϑ′, λ′) V (b, ϑ′, λ′) dΣR,b , (12)

where SR,b = areaΣR,b = 2πR·b2
E

(
R·E
b2

+ arcsinh(E
b
)
)

is the total area of the spheroid
ΣR,b and dΣR,b being the corresponding surface element; see e.g. Schmidt and
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Fabert (2008). The ellipsoidal Poisson kernel Ke(u, ϑ, λ, b, ϑ′, λ′) is given as

Ke(u, ϑ, λ, b, ϑ′, λ′) =
∞∑
n=0

n∑
m=−n

Qn,|m|(i
u
E

)

Qn,|m|(i
b
E

)
Yn,m(ϑ, λ)Yn,m(ϑ′, λ′) (13)

where the surface ellipsoidal harmonics Yn,m are defined analogously to Eq. (3),
but by replacing the spherical coordinates θ and λ through the spheroidal coor-
dinate pairs (ϑ, λ) and (ϑ′, λ′), respectively. As opposed to the spherical Poisson
kernel Ks defined in Eq. (5) the ellipsoidal kernel Ke depends also on the order
values m; a closed form is not available.

At the surface of the reference ellipsoid, i.e. for u = b, the ellipsoidal Poisson
kernel reduces under consideration of the addition theorem to

Ke(b, ϑ, λ, b, ϑ′, λ′) =
∞∑
n=0

(2n+ 1)Pn(cosα) . (14)

As mentioned before in the spherical setting the Legendre polynomial Pn depends
on the spherical distance ψ between two points on the unit sphere (cf. Eq. (5)).
Thus, if we keep one point fixed and vary the other the spherical Poisson kernel
Ks is rotational symmetric, i.e. isotropic. However, for the level ellipsoid ΣR,b, i.e.
for Eq. (14), this statement holds only, if the fixed point is the north or the south
pole. Consequently, any ellipsoidal kernel is naturally non-isotropic and can be
defined as

K(u, ϑ, λ, b, ϑ′, λ′) =
∞∑
n=0

n∑
m=−n

Qn,|m|(i
u
E

)

Qn,|m|(i
b
E

)
kn,m Yn,m(ϑ, λ)Yn,m(ϑ′, λ′) . (15)

The degree- and order-dependent coefficients kn,m define the shape of the kernel;
thus, they are called shape coefficients in the following. The dependence of the
kernel on the distance |u− b| is shown in Fig. 4, where it is seen the closer we are
to a reference ellipsoid the more terms is needed in Eq. (15).

3 Multi-Resolution Representation

The basic idea of the MRR is to split a given input signal into a smoothed
approximation and a certain number of band-pass filtered signals by applying
a successive low-pass filtering procedure. In the context of wavelet theory, this
procedure consists of the decomposition of the signal into scaling and wavelet
coefficients and the (re)construction of the (modified) signal by means of detail
signals. The latter are the spectral components of the MRR because they are
related to certain frequency bands. Since we are using sets of basis functions with
localizing characteristics the approach presented here can be successfully applied
in regional gravity field modelling. For a more detailed description of the method
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Fig. 4. Convergence of the ellipsoidal Poisson kernel as a function of the |u − b| and
maximum degree.

we refer to Freeden et al. (1998), Freeden (1999), Freeden and Michel (2012),
Schmidt et al. (2007), Schmidt and Fabert (2008) and many other publications
related to this topic.

According to the wavelet theory we assume that a signal F (u, ϑ, λ) is given and
shall be modelled at the highest level J . In the context of gravity field modelling
we may identify the function F (u, ϑ, λ) = V (u, ϑ, λ) − Vback(u, ϑ, λ) with the
difference of the gravitational potential V and a given background model Vback

such as EGM2008. Thus, the MRR reads

F (u, ϑ, λ) ≈ FJ+1(u, ϑ, λ) = Fj′(u, ϑ, λ) +
J∑

j=j′
Gj(u, ϑ, λ) (16)

where Fj′(u, ϑ, λ) is the low-pass filtered approximation on level j′. It can be seen
from Fig. 5 that the detail signal GJ of the highest level J governs the highest
frequencies of the Fj′(u, ϑ, λ) , i.e. it covers the finest structures of the signal
under investigation. Mathematically a low-pass filtered signal Fj and a band-pass
filtered detail signal Gj with j ∈ {j′, . . . , J − 1, J, J + 1} are computable from

Fj (u, ϑ, λ) =
1

SR,b

∫
ΣR,b

φj(u, ϑ, λ, b, ϑ
′, λ′) F (b, ϑ′, λ′) dΣR,b , (17)

Gj (u, ϑ, λ) =
1

SR,b

∫
ΣR,b

ψj(u, ϑ, λ, b, ϑ
′, λ′) F (b, ϑ′, λ′) dΣR,b , (18)
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where the level−j scaling function φj and the level−j wavelet function ψj are
defined analogously to Eq. (15) as

φj(u, ϑ, λ, b, ϑ
′, λ′) =

∞∑
n=0

n∑
m=−n

Qn,|m|(i
u
E

)

Qn,|m|(i
b
E

)
Φj;n,m Yn,m(ϑ, λ)Yn,m(ϑ′, λ′) , (19)

ψj(u, ϑ, λ, b, ϑ
′, λ′) =

∞∑
n=0

n∑
m=−n

Qn,|m|(i
u
E

)

Qn,|m|(i
b
E

)
Ψj;n,m Yn,m(ϑ, λ)Yn,m(ϑ′, λ′) . (20)

Various relationships exist between the shape coefficients Φj;n,m and Ψj;n,m of ad-
jacent levels; see e.g. (Schmidt and Fabert, 2008). As an example we just mention
the two-scale relation Ψj;n,m = Φj+1;n,m − Φj;n,m.

In case of band-limited signals the integration over the reference ellipsoid ΣR,b

Fig. 5. Concept of a MRR by calculating the detail signals Gj with j = j′, . . . , J
from different observation techniques considering the low pass filter matrices Hj of the
pyramid algorithm.

according to the Eqs. (17) and (18) can be replaced by series expansions in terms
of the scaling and wavelet functions φj and ψj as defined in the Eqs. (19) and
(20), respectively. The corresponding series coefficients dj,k are the basic compo-
nents of the pyramid algorithm, which relates the coefficients of adjacent levels,
e.g. the coefficients dj,k and dj−1,l of the two levels j and j − 1, respectively, via
the low-pass filter matrix Hj−1 as indicated in Fig. 5. Furthermore, we note that
(1) the number of series coefficients dj,k at level j is twice as large as the number
of coefficients dj−1,l at level j−1 and (2) the series coefficients dj−1,l can be trans-
formed into the ellipsoidal harmonic coefficients C

e

n,m, S
e

n,m as introduced in Eq.
(7). More details on the procedure addressed before are presented by (Schmidt
and Fabert, 2008) and (Schmidt et al., 2015).

Since one of the advantages of the MRR is a regional application directly related
to the spectral content of the observation techniques to be combined, the spectral
bands BJ , BJ−1, . . . of the highest level values J, J − 1, . . . are covering very high
degree values n. If we choose, for instance, the highest level J as J = 12, which
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will be the case in evaluating terrestrial gravity measurements, the corresponding
wavelet function ψ12 will cover as a band-pass filter at least the spectral band
B12 = {n | 2048 ≤ n < 8192}. Consequently, for numerical computations we re-

place in Eq. (20) the quotient
Qn,|m|(i

u
E

)

Qn,|m|(i
b
E

)
by the quotient

Sn,|m|(
u
E

)

Sn,|m|(
b
E

)
of the Jekeli’s

functions Sn,|m| as defined in the Eq. (11).

We already discussed in the context of Eq. (14) that ellipsoidal kernels are nat-
urally non-isotropic (except at the poles). However, if we assume that the shape
coefficients Ψj;n,m of the scaling function ψj as defined in Eq. (19) are restricted
to

φj;n,m = φj;n ∀ n = 0, 1, . . . ,∞ , −n ≤ m ≤ n , (21)

they are order-independent and we may benefit from the fact that the computa-
tion of the scaling and wavelet functions is drastically simplified as can be seen
from the comparison of Eq. (14) with Eq. (15) for u = b.

For more details concerning these and other scaling and wavelet functions we
refer to the textbooks of (Freeden et al., 1998), (Freeden, 1999) and (Freeden and
Michel, 2012) as well as to (Schmidt et al., 2007).

4 Final Remarks

From a wide range of approaches for modelling the Earth’s gravitational field we
presented in this paper two ellipsoidal ones, namely a

(1) global representation based on ellipsoidal harmonics and a
(2) regional multi-resolution representation based on ellipsoidal scaling and wavelet

functions.

Which of the approaches will be chosen depends on many factors, especially the
distribution, the variety and the sensitivity of the input data sets. The presented
basis functions, the ellipsoidal harmonics Yn,m, the ellipsoidal kernel Ke, or the
ellipsoidal scaling and wavelet functions φj and ψj require all the evaluation of
the associated Legendre functions of the 2nd kind. We used the hypergeometric
formulation and Jekeli’s renormalization for computing the associated Legendre
functions. One advantage of this procedure is that the functions Sn,|m| from Eq.
(11) are also needed for the transformation equation between spherical and ellip-
soidal harmonic coefficients defined in Eq. (8).

Finally we want to mention that generally (1) the importance of ellipsoidal ap-
proaches rather lies in the analysis (less corrections, continuations is needed etc.),
and (2) for users convenience (at least in the global sense) the coefficients are
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convertible to the standard spherical coefficients so that a user will not loose
his comfort but he can benefit from the ellipsoidal refinements. Since regional
refinements depend on global models, e.g. to reduce edge effects (effects from
incomplete domain, long wavelengths etc.) regional and global model approaches
should be developed as complementary tools.
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