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Abstract

The theory of boundary value problems for Laplace’s and Poisson’s equation
offers a natural basis for gravity field studies, especially in case they rest on
terrestrial measurements. Free, fixed and mixed boundary value problems are
considered. Concerning the linear problems, the classical as well as the weak
solution concept is applied. Some techniques are shown. Also an attempt is
made to construct the respective Green’s function, reproducing kernel and en-
tries in Galerkin’s matrix for the solution domain given by the exterior of an
oblate ellipsoid of revolution. The integral kernel is expressed by series of el-
lipsoidal harmonics and its summation is discussed. Some aspects associated
with the formulation of boundary value problems in gravity field studies
based on terrestrial gravity measurements in combination with satellite data
on gravitational field are mentioned too.

1. Introduction

Studies on Earth’s gravity field enable to learn more about our planer. The
motivation considered here comes primarily from geodetic applications. We
particularly focus on the related mathematics and mathematical tools. Poten-
tial theory has a special position in Earth’s gravity field studies, but other
braches of mathematics are of great importance too. The theory of boundary
value problems for elliptic partial differential equations of second order, in
particular Laplace’s and Poisson’s equation, offer a natural basis for gravity
field studies, especially in case they rest on terrestrial measurements. 

In the determination of the gravity potential W and figure of the Earth
from terrestrial gravity, levelling and astrogeodetic data one has to solve a
free boundary-value problem for Laplace’s (or Poisson’s) equation. This con-
cept in principle covers already the results by George Gabriel Stokes pub-
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lished in 1849 in his work “On the variation of gravity on the surface of the
Earth”. Nevertheless, only in the second half of the last century the free
boundary nature of the problem resulted in an explicit mathematical formula-
tion. This development is represented especially by the work of M.S.
Molodensky and his group, see (Molodensky, Eremeev and Yurkina, 1962).
Also the problem itself is usually called Molodensky’s problem. Neverthe-
less, other names are firmly connected with this concept too, in particular Pel-
linen, Brovar, Moritz, Krarup, Bursa, Pick and others. More details can be
found, e.g, in (Heiskanen and Moritz, 1967), (Moritz, 1977), (Moritz, 1980)
and also in (Holota, 1977). In 1976 the process culminated in the famous pa-
per (Hörmander, 1976), where the solution in terms of functional analysis is
presented with an exceptional rigor. In this work the nonlinearity of the prob-
lem was treated explicitly and the tie between geodesy and mathematics was
demonstrated very clearly. Comments on this are also in (Holota, 1980). Hör-
mander refers especially to (Krarup, 1973), but also to (Moritz, 1972).
Though an idealized situation is assumed in his work, the physical model is
explicitly defined. The Earth is considered a rigid body. The data measured
on the surface of the Earth are corrected for gravitational interaction with the
Moon, the Soon and planets, for precession and nutation of the Earth and so
on. The theoretical development in mid-seventies was rather rich and it is also
associated with the work by Sansò. In his papers the concept of gravity space
was successfully applied for the solution of Molodensk’s problem, see (San-
sò, 1977, 1978a, 1978b).

Nevertheless, in practice the approach to the geodetic free boundary value
problem mostly confines to the solution of its linearized version. Our expla-
nation starts with the use of the method of integral equations and with the
Green’s function method. Subsequently, in addition to the classical solution
the weak solution concept and variational methods are considered. The ap-
proach is more flexible and also some historical facts concerning the weak so-
lution concept are mention. 

In the following discussion the impact of space geodetic measurements is
taken into consideration. It changes the free boundary nature of the problem
into the fixed gravimetric boundary value problem. Nevertheless, for the na-
ture of the boundary condition the problem is nonlinear too, though again it
is treated most frequently in its linear version only. More details can be found
in (Holota, 1997). The weak solution is represented by a linear combination
of suitable basis functions. This leads to Galerkin approximations and the so-
lution of large systems of linear equations. Special attention is paid to basis
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functions generated by the reproducing kernel in the respective spaces of har-
monic functions.

The complex structure of the Earth’s surface makes the solution of the
boundary problems considered rather demanding. This equally concerns the
classical as well as the weak solution. Some techniques, e.g. the transforma-
tion of the solution domain and successive approximations, that may solve
these difficulties, are shown. Also an attempt is made to construct the repro-
ducing kernels for solution domain given by the exterior of an oblate ellipsoid
of revolution. The kernel is expressed by series of ellipsoidal harmonics and
its summation is discussed. 

The final notes are devoted to some considerations associated with the
role of boundary value problems in gravity field studies based on terrestrial
gravity measurements combined with space geodetic and space gravitational
field data. Mixed boundary value problems are mentioned and also an opti-
mization approach is considered since in the majority of cases the problems
to be solved are overdetermined by nature. 

2. Linear problem

In solving the linear version of the geodetic free boundary value problem we
start with an assumption that a potential U represents a model of the real grav-
ity potential W of the Earth and that a surface  (telluroid) is in one-to-one
correspondence with the surface of the Earth and approximates its figure. We
usually work in a system of rectangular Cartesian coordinates  such
that its origin is in the center of gravity of the Earth and its x3 axes coincides
with the rotation axes of the Earth. The problem is then to find the disturbing
potential T = W – U such that 

and

where  means Laplace’s differential operator,  is the scalar product,
,  and  for . The input

data are represented by the gravity anomaly g and the potential anomaly
W. (Here definitely  will not be confused with Laplace’s operator). The
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anomaly g is the difference between  measured on the surface
of the Earth and  in the corresponding point on the surface . Similarly W
represents the difference between W resulting from leveling combined with
gravimetric measurements on the surface of the Earth and U in the corre-
sponding point on the surface . 

Inspecting the problem quickly we immediately see that it is an oblique
derivative problem. In addition, for physical reasons, we have to assume that
the solution T meats the following asymptotic condition at infinity

where  and O denotes the Landau symbol. The position
anomaly  (improvement of the surface ) then results from

Note. In is worth mentioning that in practice many important results in the so-
lution of the boundary problem above where obtained for its special interpre-
tation in terms of the so-called spherical approximation (considered as a
mapping), see (Moritz, 1980). In this case the problem is to find T such that

and

where  represents the image of  under the spherical approximation (men-
tioned above) and  g is the magnitude of  g. At infinity again an asymptotic
condition as in Eq. (3) is prescribed for the solution T. 

3. Problems associated with the use of integral equation method

The method of integral equations is a classical technique for the solution of
boundary value problems of potential theory. Starting with Molodensky its
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application for the solution of the linear geodetic boundary value problem is
widely discussed in physical geodesy and in the literature dealing with math-
ematical problems in gravity field studies, see e.g. (Heiskanen and Moritz,
1967). If applied for the solution of the problem given by Eqs. (5) and (6), one
represents T by a single-layer potential

and looks for the unknown density . This leads to the following integral
equation 

where n denotes the outer unit normal of the surface . Starting with
Molodensky a method of “shrinking parameter” is usually applied for con-
structing a series representation of its solution, see also (Moritz, 1973). How-
ever, some specific problems are associated with the solution of this integral
equation. This in particular concerns the relation to Riesz’ theorem on com-
pact operator, and the application of the well-know Fredholm alternatives.
The cause is the fact that second integral has a strongly singular kernel and
thus does not exist in the usual Lebesgue sense, see (Mikhlin, 1962).

4. Cauchy’s Principal Value – Example

An integral defined in Lebesgue’s sense does not depend on how the partition
of the integration domain is made finer. It represents a common value of the
infimum of the upper and of the supremum of the lower Lebesgue sums. The
idea cannot be applied to integrals with strongly singular kernels. In our case,
therefore, the strongly singular integral can only be computed as Cauchy’s
principal value, usually symbolized by v.p. (“valeur principale”)
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where . 
However, we are faced by some peculiar behavior of an integral defined

in the sense like this. Together with the fact that it does not exist in the usual
Lebesgue sense, its special properties can be also illustrated by the following
example in one-dimensional analogy. Let’s assume that  and define
e.g. a function

It is obvious that

However, changing the order of integration and derivation, we do not get the
same result for the first derivative, while the result for the second derivative
coincides. Indeed,

5. Green’s function method

Green’s function is an important tool in solving boundary value problems as-
sociated with ordinary as well as partial differential equations. In our applica-
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tions we will denote this function by G(x, y). It gives us a possibility to
explicitly represent the solution not only for Laplace’s, but also for Poisson’s
equation. Green’s function can easily be constructed in cases that the solution
domain has an elementary shape. Indeed, suppose that we have a constant
R > 0 and consider e.g. the following problem

and

Following the standard principles in constructing Green’s functions, we obtain

where  is given by an inversion in a sphere, see e.g. (Holota,
1985, 1995, 2003). As mentioned, the function G(x, y) makes it possible to
express the solution of our boundary value problem explicitly. The natural
point of departure is a (slightly modified) Green’s third identity

where  means the volume element. For G(x, y) as above the
formula immediately yields
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so that T(x) is determined uniquely apart from first degree harmonic compo-
nents T1(x). Nevertheless, recall that T1(x) are eliminated through the asymp-
totic condition given by Eq. (3).

Note. The restriction of G(x, y) for  or  attains the
form of the famous (Pizzetti extended) Stokes function or the classical Stokes
function, respectively. Both these restrictions of the original function G(x, y)
are well-known in physical geodesy, see (Heiskanen and Moritz, 1967).

6. Green’s function and a more general boundary

Green’s function G(x, y) mentioned above is essentially associated with the
fact that the problem given by Eqs. (14) and (15) is considered for a sphere of
radius R. Nevertheless, G(x, y) may be applied also in a more general case.
This can be shown by means of a transformation of coordinates,

that gives the geodetic boundary-value problem represented by Eqs. (5) and
(6) the structure of the simple problem treated in Section 5, i.e.

and

with the only substantial difference that

where , for , while the metric tensor  and the Christoffel sym-
bols  depend on the geometry of the original boundary T. Thus in the cur-
vilinear coordinates  the second term on the right hand side of Eq.
(22) represents the Laplacian applied on T, while the first term has the struc-
ture of the Laplacian that corresponds to  formally interpreted as or-
thogonal coordinates. 
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Clearly, the representation formula (18) now changes into an integro-dif-
ferential equation

In both the cases, i.e. when the integral equation method or Green’s function
method is used, the solution leads to successive approximations. Neverthe-
less, for the method that rests on Greens’ function all the integrals involved
exist in the usual Lebesgue sense. More details on the convergence of the ap-
proximations applied for the solution of Eq. (23) may be found in (Holota,
1985, 1989, 1992a, 1992b). 

7. Weak solution

As demonstrated in the preceding sections the approach to boundary-value
problems in gravity field studies often represents what is known as the classi-
cal solution. We look for a smooth function satisfying the differential equation
and the boundary condition “pointwise”. The method of integral equations and
Green’s function method are most frequently used. Alternatively, we can look
for a measurable function satisfying a certain integral identity connected with
the boundary-value problem in question. This is the so-called weak solution.
Natural function spaces corresponding to this method are Sobolev’s spaces.

In many cases there even exists a possibility to replace the integration of
a differential equation under given boundary conditions by an equivalent
problem of getting a function that minimizes some integral. This corresponds
to variational methods. 

Historically, the first use of variational methods was in the form of Dirich-
let’s principle. According to this principle: among functions which attain giv-
en values on the boundary  of a domain , that and only that function
which is harmonic in  minimizes the so-called Dirichlet’s integral
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see (Michlin, 1970), (Rektorys, 1974), (Kellogg, 1953) and others. Dirichlet’s
principle was extensively used by Riemann (1826-1866), but critically com-
mented by Weierstrass (1815-1897) and later by Hadamard (1865-1963). In
the beginning of the 20th century the principle got a new interest. Hilbert
(1862-1943) showed that the justification of Dirichlet’s principle is essential-
ly associated with the notion of the completeness of the metric space. The jus-
tification by Hilbert has a close tie to his contributions to the development of
the calculus of variations, see Giaquinta (2000).

Return now to geodesy and recall that our intention is to discuss problems
associated with the determination of the external gravity field of the Earth. In
consequence we have to suppose that  mentioned above is an unbounded so-
lution domain. Therefore, as regards functions spaces, we will work with func-
tions from Sobolev’s weighted space  endowed with inner product

see (Holota, 1997). Also the boundary  of the domain  will be supposed
to have a certain degree of regularity. Putting , we will
suppose that  is a domain with the so-called Lipschitz (or Lipschitz regu-
lar) boundary, see (Necas, 1967), (Rektory, 1974) or (Kufner et al., 1977).
Lipschitz regularity represents a considerably weaker assumption in compar-
ison with the classical formulation, where the boundary is usually assumed to
be at least two times continuously differentiable.

8. Example – Neumann’s problem and a quadratic functional

Put

which is a bilinear form on  and consider the quadratic
functional
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defined on , where f belongs to the space  of square integra-
ble functions on . The functional  attains its minimum in ,
which results from the theory of an abstract variational problem, see e.g. (Ne-
cas and Hlavacek, 1981) and (Holota, 2000, 2004). Conversely, assuming that
 has its local minimum at a point , we necessarily arrive at

valid for all . This integral identity represents Euler’s necessary
condition for  to have a minimum at the point u. It has also a classical inter-
pretation. Under some regularity assumptions one can apply Green’s identity
and show that u has to be a solution of Neumann’s (exterior) problem, i.e.,

and

where  denotes the derivative in the direction of the unit normal n of
.

9. An oblique derivative problem

As already indicated, in Earth’s gravity field studies we are faced by a rather
complex physical reality. In this connection the use of the weak solution con-
cept has some advantages. It is more flexible. We could demonstrate it for the
linear version of the geodetic free boundary value problem mentioned in Sec-
tion 2. A more amplified discussion can be also found in (Holota, 1999) or
(Holota and Nesvadba 2007a).

Nevertheless, considering recent developments in geodesy, we will prefer
another example. Its importance is justified by the fact that nowadays there is
no need to solve a free boundary value problem to obtain the disturbing po-
tential T, as the geometry of the boundary may be obtained from space geo-
detic measurements. As a result, confining our discussion still to linear
setting, we can focus on the solution of the following gravimetric fixed
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boundary value problem with an oblique derivative. This means we will lock
for T such that

and

where the solution domain  is the exterior of the Earth,  represents its
boundary and  with  denoting the magnitude of

. Moreover, as a harmonic function T is assumed regular at infin-
ity, i.e.  for . The input date are represented by the grav-
ity disturbance g which, in contrast to the free boundary value problem, is a
“one point quantity” and results from the difference between g, i.e. the mag-
nitude of , and  at the same point of the boundary, cf. (Koch and
Pope, 1972), (Bjerhammar and Svensson, 1983) and (Grafarend, 1989).

Returning now to the weak solution concept, we immediately see that the
approach applied to Neumann’s problem needs some modifications so as to
express the oblique derivative boundary condition given by Eq. (32). In par-
ticular this concerns the structure of the bilinear form . In the sequel,
therefore, in contrast to Eq. (26) we put

where

and a = (a1, a2, a3) is a vector field such that ai and also , i = 1,2,3,
are Lebesgue measurable functions defined and bounded almost everywhere
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classical formulation of the problem requires that , see
(Holota, 1997, 2000, 2005a,b). 

The structure of  is rather complex. Nevertheless, the solution of
our oblique derivative problem can be approached in terms of successive ap-
proximations. Indeed, we can construct a sequence of functions Tm,

, defined by the following equations (integral identities)

which are assumed to hold for all  and . Subse-

quently, under some limitations, we can even show that  is a Cauchy

sequence in  that in the norm of the Sobolev space  converg-

es to the solution of our weakly formulated oblique derivative problem, see

(Holota, 2000).

Under certain regularity assumptions the iterations may be even interpret-
ed as follow

valid for all , while

with  denoting the derivative in the direction of ,
which obviously is tangential to  (and exists almost everywhere on Lip-
schitz’ boundary ), see (Holota, 2000).

10. Linear system

Recall that in our case we are looking for the solution of Laplace’s partial dif-
ferential equation. It is, therefore, enough to consider just the space 
of those functions from  which are harmonic in  and to reformulate
our problem, i.e. to look for  such that 
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holds for all . Subsequently we can approximate  by means of

where  are members of a function basis of . The coefficients 
then result from the solution of Galerkin’s system

Here definitely practical aspects come into play since the computation of all
the entries  of Galerkin’s matrix, especially for high n, is rather de-
manding, even for high performance computation facilities. In practice, there-
fore, it is useful to put
 

where  has a “simpler boundary”. However, for  we have to take mem-
bers of a function basis in . In  they generate a sequence
of finite dimensional subspaces , 
We will suppose that . Thus, using Runge’s property of Laplace’s
equation, see e.g. (Bers et al., 1964), (Krarup, 1969) or (Moritz, 1980), we can
see that  (restricted to ) form a function basis in  too. By analogy
then ,  and it is clear that

. Thus for all 
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and . Note that the equations above imply a continuation of 
and that Eq.(43) is an alternative expression of the original integral identity.
Clearly, the practical solution technique then rests on successive approxima-
tions. The problems were investigated and also subjected to extensive numer-
ical tests in (Holota and Nesvadba, 2007a, 2012a) and (Nesvadba et al.,
2007). 

11. Reproducing kernel and Galerkin’s system

The function space  considered in the last section is a Hilbert space
equipped with scalar product defined by the bilinear form . It is not ex-
tremely difficult to show that with respect to this scalar product  is a
reproducing Hilbert space, i.e., there exists a kernel  which is an ele-
ment of  such that

Note that the existence of  with the reproducing property is not a mat-
ter of course. For instance in Sobolev’s space  there is no kernel of
this kind, which can be deduced from Sobolev’s lemma on embedding.

In case of some simple domains the kernel which has the reproducing
property in  can be explicitly constructed. For instance in case that
 is the exterior of a sphere of radius R > 0 we have

Pn is Legendre’s function of the first kind and  is the angel between the po-
sition vectors of the computation and the moving point of the integration. In
addition it is not extremely difficult to find that

where , see e.g. (Tscherning, 1975), (Neyman, 1979),
(Holota, 2004, 2011).
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For approximation purposes the existence of the reproducing kernel in the
particular Hilbert space is extremely useful. Indeed, supposing that

 is a sequence of points which is dense in  then the lin-
ear manifold  is densely embedded in

, see (Sansò, 1986). Hence  gives us a possibility to gener-
ate finite dimensional subspaces      in
  such that  and  for all , i.e.,

. This is important since for  the elements

 in Galerkin’s matrix may be immediately expressed by

in view of the reproducing property of the kernel.

12. Reproducing kernel for an ellipsoid 

The possibility to express  by means of  is a strong stim-
ulus for constructing the reproducing kernel also in case that  is the exterior

 of an oblate ellipsoid of revolution of semi-axes a and b, . In com-
parison with the sphere  is much closer to the real solution domain .
This has very positive effect on the convergence of the iteration procedure ap-
plied for the solution of the gravimetric boundary value problem under con-
sideration. A short note motivating interest in ellipsoidal reproducing kernels
can be also found in (Tscherning, 2004). In the sequel we will denote the ker-
nel by .

Naturally, we will use ellipsoidal coordinates u, , . They are related to
x1, x2, x3 by the equations

where . Note that in the coordinates u, ,  the boundary 
of  is defined by u = b. Starting now from the reproducing property of the
kernel represented by Eq. (45) and referring to (Holota, 2004 and 2011), we
can deduce that
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where

 and  are Legendre’s functions of the 1st and the 2nd kind, while

Unfortunately, the numerical implementation of  on the basis of
Eqs. (50) and (51) is extremely demanding, especially when all the entries of
Galerkin’s matrix and right sides in Galerkin’s system have to be computed
for high resolution modelling of the solution. This motivates studies leading
to an (analytical) summation of the series that represents the kernel. Under
some approximations discussed in details in (Holota, 2014), we arrive at

 that approximates  with a relatively high degree of accu-
racy and is given by

where
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and  denotes the angular distance of points  and  on the
sphere, when  and  are interpreted as spherical latitude and longitude, re-
spectively. Of course, the problem is the summation of the series on the righ
hand side of Eqs. (54) - (56). In (Holota and Nesvadba, 2014) we can find that

cf. Eq. (47),

where  is a new variable whose relation to  is given by 

and

are the Legendre (incomplete) elliptic integrals of the first and the second
kind. Finally, for , referring to (Holota and Nesvadba, 2014) again,
we have

where  is the azimuth of the point  as seen from the point ,
when  and  are interpreted as spherical latitude and longitude, respectively,
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while

and

The numerical tests discussed in (Holota and Nesvadba, 2014) show that
 may serve as an efficient tool for solving potential problems in

gravity field studies, in particular for constructing Galerkin’s approximations
of the disturbing potential.

13. Concluding remarks

The historical relation between geodesy and mathematics is well-known. The
role of potential theory in gravity field studies represents one of its important
forms. In a sense this was also demonstrated in our discussion on the use of
the theory of boundary value problems in the determination of the gravitation-
al potential and figure of the Earth. Nevertheless, the real picture of the situ-
ation is even more varied and shows aspects that have to be taken into
consideration in the solution of our problem. This became particularly appar-
ent when satellite data came into play.
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We saw it, for instance, in our reasoning justifying the transition from the
free to fixed boundary value problem in the determination of the gravitational
potential. Another example is the use of mixed boundary value problems that
may serve as a mathematical model for gravity field studies based on hetero-
geneous boundary date, see e.g. (Holota, 1982, 1983a,b,c). 

In addition it is also necessary to take into consideration the fact that in the
majority of cases the determination of the gravitational field from the combi-
nation of terrestrial and satellite data represents an overdetermined problem.
Hence, an optimization approach has to be applied together with the concept
of boundary value problems. This is another rich field that deserves attention.
Some aspects and tools concerning this topic are discussed in (Holota, 2007,
2009), (Holota and Kern, 2005), (Holota and Nesvadba, 2007b, 2009, 2012b).
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