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The boundary elements formulation of Molodensky’s problem:
new ideas from the old book Physical Geodesy

This paper is based on an idea born in reading once more Physical Geodesy and it is dedicated to
Helmut Moritz who has been my teacher of Geodesy

Abstract

After a short recall of the definition of Molodensky’s problem and of its
analysis, from early times to more modern papers, the attention is focussed
on the linearized version of the problem, in its scalar form; this is then
suitably reformulated into the so-called planar approximation. The primary
goal of the problem is that one would like to retrieve the anomalous gravity
potential T on the surface s , called telluroid, that approximates the Earth
surface 8, from the free air gravity anomalies Ag given on 5. Would Ag
be related simply to the normal derivative of T' on S , & suitable use of
the third Green identity allowed to write a (regular) integral equation, the
solution of which gives T on S. This approach is known in mathematics as
the Boundary Elements Method (BEM). However Ag is rather related to a
directional derivative of T', oblique with respect to S. Also in this case the
third Green identity can be put in the form of an integral equation, which
this time has to be strongly singular. this is usually done by exploiting a
coordinate system adapted to the normal to S and a couple of tangential
coordinates.

Yet in the present setting by exploiting a different decomposition of the
normal of S one can reach the above target in a simpler manner. In this
way a suitable BEM integral equation is formulated in this paper. Such an
equation is known to enjoy the Fredholm alternative property, so that prov-
ing the uniqueness of the solution of the problem is of a great importance.
this is done by adapting to the present Euclidean setting the proofs already
present in literature.

The nice feature of the theorem is that one has to put on S the only re-
quirement to have a finite inclination (< 90°) with respect to the horizontal

(z,y) plane.
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1 Formulation of the problem
The Scalar Molodensky problem is to find the gravity potential W(x) in the
outer space and the surface S, at all points P of which we know

Pes; (Ap,ep) ellipsoidal coordinates of P
W (Xp,pp) the potential on S
g(Ap,pp)  the modulus of the gravity vector on S

If we stipulate that the unknown S can be described by the vector function

X(Av@) :xe()‘v@) +h(>‘7 W)V(Av 90)7 (1)
P={x(xp)}

P=(X(A\, &)

Figure 1: The surface S is in one to one normal correspondence to the
ellipsoid £.

where ©(, ) is the normal to the ellipsoid in the direction of P, and if we
recall that
i
Wix) =V(x) + §w2(w2 +y%) (2)

with V(x) the purely Newtonian component of W, that is harmonic outside
5, the problem can be conveniently formulated as
1
A{W — §w2(12 +¢9} =0 inQ (3)
W‘S = w()\,go) on S (4)
[VWllg =g(%, %) on§ (5)
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This is a non-linear, free-boundary, oblique derivative boundary value prob-
lem for the Laplace equation.

This formulation and its first analysis in Holder spaces can be found in [18].

Since the normal gravity potential U(x) approximates W(x) with a relative
error of the order of 1077, it is natural that (3), (4), (5) can be linearized
by setting

W(x) = Ux) +T(x) (6)
and expressing a new linear problem for the anomalous potential T

If we define a telluroid S as

5= {2 9) =% 9) +h(% (X, )} (7
where ﬁ, the so-called normal height, is given by the solution of the equation
Ulke(A,0) + B0, @)w(h, 0)] = w(d, ) =W ®)

then one easily proves that [7, 21]

=] ‘A‘
o w2
wne wnn

&

Figure 2: The geometry of the telluroid and height anomaly ¢

in a linear approximation

. B
=T o)
where v(P) = |y(P)| = |[VU(P)|, and
Ag(he) = g(P) = (P) = -2 ¢ Bl | (10)
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Therefore our problem (3), (4}, (5) can now be formulate as:
find T solution of the oblique derivative BVP
AT =0 inQ={h>h)
o ~
S = f?:b-T =Ag(Xp) ons (Hh

g

In this form the problem dates back to the work of [15]. Note has to be taken
that (11} is not complemented by asymptotic conditions for T at infinity,
which we do not introduce here, because we want ultimately to go to a
planar approximation where they have no longer effect. Several geodesists
and mathematicians have been working on this problem with different tools.
We mention here only the early works by H. Moritz, T. Krarup and more
recently by L. Svenson, L. Hormander, P. Holota, F. Sanso, F. Sacerdote,
G. Venuti.

The last step of this section is that we want to go to a planar approximation
of (11), namely one in which the curvature radius of the ellipsoid is sent to
infinity, as explained by Helmut Mortiz in [16].

o2
In this case we easily see that - — 0 so that (11) is substantially simplified.
Let us introduce then a new notation adapted to the planar approximation.

Narnely we set

n "y

Figure 3: The planar approximation of a portion of Fig. 1
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T=T(=)

aT or
Vonema +ey3y =VeT
, oT
T = B "

With this notation we have the new problem

AT =0 in Q
{ T’y = —Aglg) ou ey

where we impose on T just to be regular at infinity, namely

T —0forz—oo. (13)

2 A recall of the BEM for the Neumann problem

The third Green identity for a function T' harmonic in {2, when taking the
liit for = — H(£), reads

1 oT 1
T HE) = 5 [Tl A (5, )~ ot H) ISy (19
In this equation &, are points on the z = 0 plane,
bey = 1€ =l + (HE - Hm)*[V? (15)
and
g—T(n, Hm) =n, VT = (16)
i S={==H(n)}
=1y - Vol (n, H(n)) + ny - . T'(n, H(n)) ;
sitnilarly
O I\ g (E—m) +ny-e(H(E) — H(n))
= = . (17)
Ony, #5"7

Remark 1. It is important to realize that the Neumann operator V¢ , defined
as

Nx{T(§,2} =n(&) - VT(£, 2) (18)
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acts on the harmonic potential 7" in a way that can be defined for any point
x = (€,2) € Q, given the particular geometry of S. So if we further define
the trace operator on S

TaT(€,2) =T(& H(E) , (19)
when we write (16) we mean
S (o, HOn) = Tu{N(T)) 3 (20)
7

a similar consideration holds for (17), so that
g /1 4
— | = | =Ta{ly [Nt
5 (3) =TT LD
where x = (£, 2) and y = (1, 2').
Keeping the above Remark in mind, we can rewrite (14) as

RAT(E ) = 5o T (T, D) Ty () +

Ty [Ny (T, z’))}rx[ryil}dsfy (21)

Now if we assume that the normal derivative of T i8 given on S, i.e. that

g(n) = ~Ty[Ny(T(n, 2))] (22)
i8 & known function and we want to find 7 on S, namely
F&) =Tx[T( =), (23)

we can simply rewrite (21) in the form

F(E) — % / f(,,,])nn (E—n) +nn[;‘ez’(H(E) i H(ﬂ))dsn
' &
1 1
=o— [ g(n)5—dS, . (24)
2 ./9 = fﬁn o

The right hand side of (24) is known, so this is just an integral equation
of the second kind in the unknown f(£). As we can see the kernel of this
equation is singular, but not too much as we shall show in the next section,
if we put some restrictive hypotheses on the regularity of 5. Therefore (24)
is a weakly singular equation and standard numerical techniques can be
applied to its solution, for instance a spline discretization, what is typical of
the BEM.
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3 The role of the regularity of S

The question of the solution of singular integral equation is an old item in
Mathematics dating back to the 30ies of the past century [24, 2]. Excellent
classical reviews are [13, 14].

The item has got quite a renaissance in more recent times in the study of
strongly elliptic systers, by using the full apparatus of analysis in Sobolev
spaces that was mostly developed in the middle of 20th century. On the
recent set up of the problem one can consult [12]. Here we limit ourselves
to use the results of [13].

So in this section we introduce some elements of the geometric analysis of
S and study the regularity of the kernel K (€, 1) of equation (24), namely

(E-m)tny-es(H(E) - Hn)
ES
&n

K(&m) == (25)

We shall see then in next section how things are changed when we go over
from the solution of a Neumann problem described by (24) to the solution
of an oblique derivative problem.

So let us first of all note that
v(€) = VoH(£) (26)

is a vector in the horizontal plance indicating the direction of maximum
inerease of the function H(€) and its modulus v(€) is just the tangent of the
maximum inclination I(€) of S at &, as shown in Fig. 4 and by the formula

e — s i VD~ HO] | HE + pe) — H(E))
(€)= taT() = sup liy =1 —ZE = iy ; .

(27)

Note that in this way 7(£€) is always positive; we shall also stipulate that
1(€) < I, <n/2 (28)
80 that
Iv(€}] < v = tgly < fo0 (29)
Let us note too that the relation between the area element dS on S and its
projection dSy on the (z,¥) plane is just

dSy = cos IdS,, . (30)
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Figure 4: The inclination of S. Here e is a unit vector in the same direction
as v

In particular we have
cosI = (14 w(&)})~ /2

so that for the Jacobian J we have

s, 1

= = 4 B
4 dS  cosl ~ cosly (1+23) oK (L)

Now, although this condition could he further generalized, we shall agree
that H(£) has bounded second order derivatives, implying also that the
curvature of 5 has to be bounded.

So if we put
CE)=[0rH(E)], (1,k=12) (32)

and

Oy = Slép I C@ I, (33)
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we have the Taylor expansion

i) — H(E) = H(E + pe) — H(E) =
po(€) e+ 5o ClE +oee (34)

with 0 < o < p.

Note that in this case e is an arbitrary direction in the (z,y) plane and
pe =n — &, so that (34) can be written

H(n) - H(g) =v(€) (n— &) +R(Em (35)

with
1
IRE m)| < 50 In— ¢, (36)

Now we can notice that the infinitesimal vector
dt = dé + dHe, = d€ + v - d€e,

is tangent to S at &€ for every d€. Therefore the vector —v +e; is orthogonal
to all dt, since

(—v+e) (d+v-dée.)=0.

Accordingly, the normal to S at € can be written

ng = % =cosl(—v+te.). (37)

One easily realizes that this is the normal pointing in Q. Therefore, recalling
(25) and (37),
cos I(n)

£3
&n

so that, using (35) and (36),

K, = [—v(m) - (& —n) +H(E) — H(n)]

cosl(n) 1
( )—C+'|€—71\2<

|K(&,m)] TQ <
“en

IN

IN
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this is because

€ —ml _ € — 7] &7
Loy & —nP +(H(E) - HmP®

Since the kernel K is majorized by the integral kernel at the right hand
side of (38) which is integrable, we can claim that under the above regu-
larity conditions the integral equation (24) is only weakly singular and it
enjoys the Fredholm alternative. That the exterior Neumann problem has a
unique solution is well known and so the BEM equation (24) is well suited
to approximate numerical solutions.

4 The BEM equation for Molodensky’s problem

We finally go back to the equation (24), keeping the notation (23) for the
unknown T on S, but going back to the definition (22) in the right hand
side.

So this writes, recalling also (12) and (30),

1 1

— | Ty[Ny(T)]5—dS, = -
271'/ : ()]Esn ’ v
QW/COEEIWTI () VoT(n, H (Z))+T/(n’I—[(’n))}djs77

The next step is fundamental to find the correct integral equation.

Recall that by definition
fo) =T(m,H(m) =TyT(n,7); (40)
if we take the V,, of this relation we get

VolyT(n,2) = Ve f(n) = VoT(n,H{n))+ T (n, H(m)VoH (1) (41)
— LyVeT(n,?) + TyT'(n, B )VeH ()

so that the term

v(n}-VoT(n, H(n)) = v(n) - TyVoT(n,2')
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appearing in (39) can be written as

v Vol(n,H(m) = v(nn) Vofm) — V)T (n, H(n)) =
= v(n)- Vof(m) + V) Ag(n) . (42)

Substituting and integrating by parts on the horizontal plane, we get

[ {Ny@nédsy = (13)
=2 [ vt Tastmass g [F D Agtyas
%&ﬂVW(%iquﬂ%+h@> (1)
where h(€) is a known function, i.e.
0= 5 [HE D agmas,. )

Furthermore one has

e (49)
_ AgH(m) | () (& —m)+ (H(E) = Hm)(v(n))*
ben Cen

For the coming discussion, it is convenient to use the notation
‘5 . ’7| =Sy
as already done in §3, and

£—n

7

=1

as in the classical text of Mikhlin.

Recalling (35), it is immediate to prove that

4
125t e i
P
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so that
ten = 0(p) (47)

Therefore an account of the hypotheses of boundedness of the second deriva-
tives of H(€) (cf. (32), (33)) one has

Sl _ o, (45)

ten

showing that this kernel is only weakly singular and then the corresponding
integral operator is compact, for instance, in L.

We study now the second part of the kernel (46), namely

v{n) - (€ —n) + (H(E) — Hm)v*(m)

H(E,n) = (2 + (H(E) — Hi) 272

(49)

Our purpose is to prove that (49) can be decomposed into two kernels, one
of which weakly singular and the other strongly singular, but such that the
theory of [13] can be replied.

Proposition 1. We have
H(Em) =W(En) +5Emn) (50)
where
WEml =06,
i.e. W is weakly singular, while

f&9)
P

8(&m = (51)

where f(&,19), the so-called characteristic of the kernel, is bounded, contin-
uous in ¥ for each fixed £ and such that the fundamental condition holds

/OQW f(&,9)dd =0, (52)

where ¢ is just the angular anomaly of the vector ¥, running along the unit
circle.
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Proof. We first note that, also recalling (35),
Wo(€,m) = H(&m) + H(n, &) =

(53)

_ [v) —v(&)] - (€ —m) + V(&) - (§ — ) + R(E m)][w*(m) — *(€)]

£3
&n
Since

and

|02 (1) — v*(©)] < [v(m) — v(&)l[v(m) +v(€)| = O(p) ,

we see that the numeration in (53) is O(p?) and so

(Wo(&,m)| =0(™"),

ie. it is a weakly singular kernel. So we can reduce ourselves to study

) = v(€) - (E—m+ V(&) E—n)+REWFE)

3
z&n

Since R(€, 1) = O(¢?) we see that
) . R(Ezn) . U2(§) s O(

o
T P ) y
é&n

W (77: 6

namely it is weakly singular.

So we have only to study

g — YO E-mreE)

3/2
: (&) (E-+RE D
A3 e

1 v(g) 901+ (E)

R {1 +(vig) v+ %)2} v
so we finally write
£ €) = vié) 19(12+ (€) L it
P [1+(v(g) -9+ Ey]
. S G R )
[L+{o(E) -0PBR] ° P+ [u(e)- PR

Wa(n, &) + S(&n) .

(54)

(55)

(56)

(58)
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We can further notice that, since

R
Fia Ofp)
we have too
Wa(n,€) =0(p ") , (59)

i.e. this is a weakly singular kernel. On the contrary

1 v(&)-9(1 ++*(€)
7 L+ (v (€) - BPT?
is in fact a strongly singular kernel. This however has the canonical form

(51) and the characteristic is both bounded and continuous in @. Therefore
(50) and (51) are proved with

S(€,m) = (60)

Moreover since

_ AL )
ORI

is an odd function in ¥, the condition (52) is indeed satisfied. O

F(€,9)

Due to the above proposition, we know from a theorem by Tricomi ([13],
Theorem 1.5) that the integral operator with strongly singular kernel (60)
is a bounded operator in L2,

The next property we need is that the operator I — A, with A the singular
integral operator

AT = ¥ %T(n)m , (61)

has index 0, i.e. it enjoys the Fredholm alternative property. This can be
based on the symbol of I — A, defined as (see [13], §22, (1))

T(g,9) = Simb (T — A) =1— (¢, 9) = (62)

il 1 T
=1-— log ———— — i— si & — 3 F)ddy .
5 o8 reerg g 15 siem cos(9 — )16 Do)y
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In this formula the vector ¥ is identified with the corresponding angle # and
50 it is for 9 and 9.

According to Theorem 1.37 of [13] ¥(&, ) has to be a smooth function of ¢
(e.g. to have square integrable third derivatives) and to be such that

inf [T(€,9)| > 0 . (63)
As for the first condition it gives no harm, since we can write

- 1 1 LT ’ ’
D(E,9) = = ,/{IOg\cosﬁ’\ — i sign cos O} f(€,9 — O )dv (64)

and

v(E€) cos(# — )

Fitgtt—b) = 11+ v2(€) cos? (¥ — 7_9’)}3/2

(65)

is an analytic function of .

Moreover the relation (63) holds for the characteristic (65). Let us note that

|W(g,9) > |[ReW(g,d)| > (66)
2 ! 27.{1 1 9y =1 T
= E/O Ogm\f(ﬁ, —)dY =1-1.

On the other hand it is elementary to verify that inz > 0

. B . 8
[1+$2]3/2 ~ 8.7 !

so that, exploiting a standard integral,

2 4 f(r/2 1
I < ——/ log ——dt¥' =
3327 Jo cos
2 2 = 2log2
= —=—-=log2= =3
3/ 2 ¢ 33

= 0,26780, 2678 < 1

this shows that (63) is satisfied.

Summarizing the findings of this section, we can say that the problem of
Molodensky written in planar approximation can be cast into the form of

69



70

Fernando Sanso

a strongly singular integral equation, namely, by using formulas (46}, (45},
(44), (39), (37) into the third Green identity (21},

f(E) — % / *2"(77) . (é — 77) T (%(E) s H(W)(l — ’02(77)) f(7])ds()
n
1 [ AoH(n)
57 [ S o0 e (67)

The known term h(£), given by (45), is certainly I? if so is Ag; more
precisely A(€) is in H%? when Ag is in L2, Since the alternative holds for
(67) in L?, thanks to Proposition 1, if we prove that the original problem
(12) has only one solution when Ag € L2, as we do in the Appendix, we can
say that (67) has one and only one solution. Even more, since we prove in
the Appendix that when Ag e L, then T' € H? we arrive at the following
Theorem:

Theorem 1. The problem of Molodensky in planar approzimation (12} can
be equivalenily put in the form of a strongly singular integral equation (67).
Such an equation has one and only one solution T € HY? for every Ag € L2,

5 Conclusions

The linearized problem of Molodensky in planar approximation can be trans-
formed into a unique integral equation connecting Ag, known on the tel-
luroid, with the anomalous potential T on the same surface and the corre-
sponding height anomaly, allowing the reconstruction of the unknown sur-
face of the Earth.

The integral equation is necessarily strongly singular, however it is possible
to show that it enjoys the Fredholm alternative property. A general theorem
of uniqueness and regularity of the solution completes the analysis of the
problem in a satisfactory way.

Essentially the same analysis with a few changes of the terms of (67) can
be performed in spherical approximation. The mentioned stability theo-
rem justifies a direct application of the BEM to (67), thus providing a new
numerical tools for the solution of the problem.
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Appendix

In this Appendix we want to prove that any solution of the problem (see

(12))

{ AT =0 in@z{z>H(E}} (68)

T H(&)=Ag onS§,
regular for h — oo, when Ag € L*(R?) is unique and it is even in HL2(R?).

Proof. That the solution of (68) is unique is immediate. In fact if T is
harmenic in €, then so is T'. But if T'|y = 0, then 7" = 0 in Q. However
this means that

T(€, 2) = F(€) (69)
for some F'; but we must also have

lim 7(,) = 0 (70)

because of the regularity hypothesis, so it must be T =0 in Q.

That [ (7) € HY2(R?), namely that ['«(VT) € L*(R?), comes from the en-
ergy integral adaptation to the Cartesian geometry here used for the planar
approximation [21] pag. 672. In fact we have the identity

]
(B2
19
= —&\VTP ; (71)

V. (T'VT) = (2vT) . VT
By integrating (71) in Q we receive
1 2 e 2
. /dsorXWT\ . /dSn/ - dz——\VR\
/ T (T)Tx [N (T)]dS . (72)

Since

—I«(T) = Ag

71
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and

1
dS = JdSy = ——=d5,
cos |
(72) yields

/ dSTy|VTP) = 2 / dSpAg JT [V (T)] (73)

Therefore, recalling the notation (31),
/ dSol VT < 244 ] / dSaAg*(€)] -
: / dsoT [M(T)P] . (74)
Since obviously
/ dSoTR[N(T)]? < / 50T |V T2
by simplifying (74), we find

[/dsnrwa\Q]l/Q “ 2J+[/dSOAg2(§)]1/2 ,

narmely

Ag e I*(R*) = T € H*(RY).
as it was to be proved. O
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