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Now we will be more specific 
 
In the determination of the gravity potential and figure of the 
Earth from solely terrestrial gravity data one has to solve a free 
boundary-value problem (which obviously is non-linear) for 
Laplace’s (or Poisson’s) equation. 

This concept covered several decades of the last century,  
expressed the tie between geodesy and mathematics with  
an exceptional pregnancy (e.g. Molodensky, Moritz, Krarup,  
Hörmander , but also many others). 

Subsequent developments expressed this relation still more dis-
tinctly and showed further aspects of the role, the mathematic 
has in geodesy. This was particularly the case when satellite 
data came into play. 
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2.  Linearized Problem 
In practice the approach to the geodetic free boundary value 
problem mostly confines to the solution of its linearized version, 
i.e. to find T  such that 

                                  0T∆ =                          outside the telluroid 

, ,T T W∆ ∆+ 〈 〉 = + 〈 〉h grad h g     on the telluroid 

and that 
3(| | )

| |
cT O −= + x
x

   for    | | → ∞x  

where   1−= −h M γ   ,    U=γ grad     and    
2

ij
i j

U
x x
∂

=
∂ ∂

M   . 

The position anomaly is then given by 

)(1 TgradgM −= − ∆ζ  . 
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The following figure gives the interpretation. 
We suppose that there is a one-to-one correspondence be-

tween the points P and Q , e.g. such that 
 
 
 
 
 
 
 
 
 
 
and that the telluroid (e.g. Marussi’s telluroid) represents 
a model of the Earth’s surface . 
 In addition we suppose that from geodetic, gravimetric and 
astrogeodetic measurements we know  PW   and  PP Wgradg =  
on the Earth’s surface. 
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Recall also that in the former practice the boundary problem 
above was often considerably simplified and treated in the fol-
lowing form 
                                        0T∆ =              for   | | R>x  

2
| |
TR T R g∆∂

+ = −
∂ x

   for   | | R=x  

Its solution is given by the famous formula  

( , ) ( )
4
RT S g d

σ
ϕ λ ψ ∆ σ

π
= ∫     where 

⎟
⎠
⎞

⎜
⎝
⎛ +−−+−=

2
sin

2
sinlncos3cos51

2
sin6

2
sin

1)( 2ψψψψψ
ψψS  

which was published by George Gabriel Stokes in 1849 in his 
work “On the variation of gravity on the surface of the Earth”, it 
is therefore called Stokes’ formula and ( )S ψ  then Stokes’ func-
tion. 
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Nevertheless, soon the accuracy requirements where higher and 
the effort to solve the linearized problem for a better approxima-
tion of the boundary surface became a hot topic.  
 Many important results where obtained for the problem inter-
preted in a spherical approximation (considered as a mapping).  
The problem was to find T  such that 

                     0T∆ =                  outside  Γ    ( telluroid in s. app.) 

| | 2 2 | |
| |
T T W g∆ ∆∂

+ = −
∂

x x
x

   on   Γ    ( telluroid in s. app.) 

and again the asymptotic condition at infinity was added, i.e.: 

3(| | )
| |
cT O −= + x
x

   for    | | → ∞x  

The solution methods and their use were given a considerable 
attention. 
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3.  Integral Equation Method 
In this approach, one represents T  by a single-layer potential 

1( ) ( )
| |

T d
Γ

µ Γ=
−∫ yx y

x y
 

and looks for the unknown density µ . This leads to the following 
integral equation:  

 2 2

3

3 12 ( )cos( , ) ( )
2 | | | |

1 | | | | ( )
2 | | | |

x d

d g

Γ

Γ

πµ µ Γ

µ Γ ∆

− −
−

−
− =

−

∫

∫

y

y

x x n y
x x y

y x y
x y x

 

However, one soon realizes that an application of the Riesz  
theorem of compact operator, and the well-known Fredholm  
alternatives is associated with difficulties.  
 
The second integral has a strongly singular kernel and thus does 
not exist in the usual Lebesgue sense. 
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4.  Cauchy’s Principal Value 
The Lebesgue integral does not depend on how the partition of 
the integration domain is made finer. It represents a common 
value of the infimum of the upper and of the supremum of the 
lower Lebesgue sums.  

The idea cannot be applied to integrals with strongly singular 
kernels.  

The strongly singular integral in our case can only be computed 
as Cauchy’s principal value, usually symbolized by v.p. (“valeur 
principale”): 

,

2 2 2 2

3 30

| | | | | | | |( ) lim ( )
| | | |

d d
ε

ε
Γ Γ Γ

µ Γ µ Γ
→

−

− −
=

− −∫ ∫
x

y y
y x y xy y

y x y x
v.p.  

where  , { ; | | }εΓ Γ ε≡ ∈ − ≤x y y x  

Some properties of an integral defined in the sense of “valeur 
principale” are illustrated in the following example. 



 12

5.  Cauchy’s Principal Value – Example 
Assuming that ( , )x a b∈ , we obviously have 

 
0 0

0 0

( ) lim lim

lim ln lim ln ln

xb b

a a x

d d df x
x x x

b x b x
x a x a

ε

ε ε
ε

ε ε

ξ ξ ξ
ξ ξ ξ

ε
ε

−

→ →
+

→ →

= = +
− − −

− −
= + =

− −

∫ ∫ ∫v.p.
 

 ( )
( )( )

a bf x
x a b x

−′ =
− −

     and     2 2
( )( 2 )( )

( ) ( )
b a a b xf x

a x b x
− + −′′ =
− −

 

However, 

2
1

( )

b b

a a

d dd
dx x x

ξξ
ξ ξ
⎛ ⎞

= − = − ∞⎜ ⎟− −⎝ ⎠
∫ ∫v.p. p.v.  

2

2 3 2 2
1 2 ( )( 2 )

( ) ( ) ( )

b b

a a

d d b a a b xd
xdx x a x b x

ξξ
ξ ξ
⎛ ⎞ − + −

= =⎜ ⎟− − − −⎝ ⎠
∫ ∫v.p. p.v.  
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6.  Green’s Function Method 
Green’s function can easily be constructed in cases that the  
solution domain has an elementary shape. It gives an explicit  
representation of the solution not only for Laplaces’, but also for 
Poissons’ equation.  Indeed, consider e.g. the following problem 

T g∆ =    for   | | R>x     and     
2

| |
T T f

R
∂

+ =
∂ x

   for   | | R=x  

Following principles in constructing Green’s functions, we obtain 

2

3 2

2 2

1 1 3 | |( , )
| | | | | | | || |

cos 1 cos | |5 3ln 1
2 | || | | || | | |

R RG

R Rψ ψ

−
= + − −

− −

⎡ ⎤⎛ ⎞−
− + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

x yx y
x y x x y x y

x y
x y yx y

 

where  
2

2| |
R

=x x
x

  is given by an inversion in a sphere. 
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The function ( , )G x y  enables us to express the solution of our 
problem explicitly. The natural point of departure is a (slightly 
modified) Green’s third identity 

| |

| |

1( ) ( , ) ( )
4

1 ( ) ( , )( , ) ( )
4 | | | |

R

y
R

T G T y d

T GG T d S

∆
π

π

>

=

= − −

⎡ ⎤∂ ∂
− −⎢ ⎥∂ ∂⎣ ⎦

∫

∫

y

y

x x y y

y x yx y y
y y

 

For ( , )G x y  as above the formula immediately yields 

1
| | | |

1 1( ) ( ) ( , ) ( ) ( , ) ( )
4 4y

R R

T T G f d S G g d
π π= >

= − −∫ ∫
y y

x x x y y x y y y  

Note. The restriction of ( , )G x y  for | | R=y  or | | | | R= =x y   
attains the form of the (Pizzetti extended) Stokes function or the 
classical Stokes function, respectively. 
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7. Green’s Function and a More General Boundary 
Green’s function ( , )G x y  is essentially associated with our  
problem considered for a sphere of radius  R . Nevertheless, 

( , )G x y  can be also useful in a more general case. This can be 
shown by means of a transformation of coordinates 

1 2 3( , , )i iy y x x x=    ,   1, 2, 3i =  

that gives the geodetic boundary-value problem the structure of 
our simple problem, i.e.  

T g∆ =y    for   | | R>y     and    
2

| |
T T f

R
∗∂

+ =
∂ y

  for   | | R=y  

with the only difference that 
2 2

( ) ij ij k
ij

i j i j k

T T Tg g T g
y y y y y

δ Γ
⎛ ⎞∂ ∂ ∂

= = − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 

where the metric tensor ijg  and the Christoffel symbols k
ijΓ   

depend on the geometry of the original boundary (the telluroid). 
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Clearly, the representation formula now changes into an integro-
differential equation. 

 

1
| |

2

| |

1( ) ( ) ( , ) ( )
4

1 ( ) ( )( , ) ( ), ,
4

R

i i jR

T T G f d S

T TG g T d

π

π ξ ξ ξ

∗

=

>

= − −

⎡ ⎤∂ ∂
− ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

∫

∫

ξ
ξ

ξ

y y y ξ ξ

ξ ξy ξ ξ ξ
 

In both the cases, i.e. 

integral equation method    and   Green’s function method, 

the solution leads to an iteration process. Nevertheless, for the 
method that rests on Greens’ function all the integrals involved 
exist in the usual Lebesgue sense. 
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8.  Weak Solution 
In gravity field studies the approach to boundary-value problems 
for Laplace’s (or Poisson’s) equation often represents what is 
known as a classical solution. - We look for a smooth function 
satisfying the differential equation and the boundary condition 
“pointwise”. The method of integral equations and Green’s func-
tion method are most frequently used. 
 Alternatively, we can look for a measurable function satisfy-
ing a certain integral identity connected with the boundary-value 
problem in question. This is the so-called weak solution. Natural 
function spaces corresponding to this method are Sobolev’s 
spaces. 
 In many cases there even exists a possibility to replace the 
integration of a differential equation under given boundary con-
ditions by an equivalent problem of getting a function that mini-
mizes some integral. This corresponds to variational methods.  
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 Historically, the first use of variational methods was in the 
form of Dirichlet’s principle. According to this principle: among 
functions which attain given values on the boundary Ω∂  of a 
domain Ω , that and only that function which is harmonic in Ω  
minimizes the so-called Dirichlet’s integral: 

23

1 ii

u d
x

Ω =

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

∑∫ x  

Dirichlet's principle was extensively used by  
 Riemann (1826-1866), but critically commented by  
 Weierstrass (1815-1897) and later by Hadamard (1865-1963). 
In the beginning of the 20th century the principle got a new in-
terest. Hilbert (1862-1943) showed that the justification of 
Dirichlet's principle is essentially associated with the notion of 
the completeness of the metric space.  
 The justification by Hilbert has a close tie to his contributions to the de-
velopment of the calculus of variations, see Giaquinta (2000): Hilbert e il cal-
colo delle variazioni. Le Matematiche, Vol. LV, Supplemento n. 1, pp. 47-58. 
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Nevertheless, our intention is to discuss problems associated 
with the determination of the external gravity field of the Earth. In 
consequence we have to suppose that  Ω   mentioned above is 
an unbounded solution domain.  

 As regards functions spaces, we will work with functions 
from Sobolev’s weighted space (1)

2 ( )W Ω  endowed with inner 
product 

3

1 2
1

( , )
| | i ii

uv u vu v d d
x x

Ω Ω=

∂ ∂
≡ +

∂ ∂∑∫ ∫x x
x

 

 Also the boundary Ω∂  of the domain Ω  will be supposed to 
have a certain degree of regularity. Putting 3Ω Ω Ω′ = − ∪∂R , 
we will suppose that Ω′ is a domain with Lipschitz’ boundary. 
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9.  Example - Neumann’s Problem and a Quadratic 
Functional 

Put                           
3

1
( , )

i ii

u vA u v d
x x

Ω=

∂ ∂
=

∂ ∂∑ ∫ x  

which is a bilinear form on  (1) (1)
2 2( ) ( )W WΩ Ω×   and consider the 

quadratic functional 

( ) ( , ) 2u A u u uf dS
Ω

Φ
∂

= − ∫  

defined on  (1)
2 ( )W Ω , where  2( )f L Ω∈ ∂ .  

 The functional  Φ   attains its minimum in (1)
2 ( )W Ω  (which  

results from the theory of an abstract variational problem). 

 Conversely, assuming that  Φ   has its local minimum at a 
point  (1)

2 ( )u W Ω∈ , we necessarily arrive at 
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3

1
( , )

i ii

u vA u v d vf dS
x x

Ω Ω= ∂

∂ ∂
= =

∂ ∂∑ ∫ ∫x  

valid for all  (1)
2 ( )v W Ω∈ .  

 This integral identity represents Euler’s necessary condition 
for  Φ   to have a minimum at the point  u . It has also a classical 
interpretation. Under some regularity assumptions one can apply 
Green’s identity and show then that  u   has to be a solution of  
Neumann’s (exterior) problem, i.e., 

0 inu∆ Ω=  
and 

onu f
n

Ω∂
= − ∂

∂
 

where  ∆   means Laplace’s operator and  / n∂ ∂   denotes the  
derivative in the direction of the unit normal  n  of  Ω∂ . 
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10.  An Oblique Derivative Problem 
In studies on Earth gravity field, however, we are faced by a 
rather complex reality. We will consider the linear gravimetric 
boundary-value problem (which is a fix boundary value problem) 
and try to show its tie to the explanations above. 

 Let   W   and  U   be the gravity and the standard potential of 
the Earth, respectively. Thus  
 g W= | grad | is the measured gravity, 

 Uγ =| grad | means the normal gravity, 

 ( ) ( ) ( )T W U= −x x x  is the disturbing potential, 

 ( ) ( ) ( )g gδ γ= −x x x  is the gravity disturbance.  

We assume that g  is corrected for the gravitational interaction 
with the Moon, the Sun and the planets, for the precession and 
nutation of the Earth and so on. 
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The solution domain Ω   is the exterior of the Earth and our  
problem is to find T  such that 

0 inT∆ Ω=  

,  onT gδ Ω= − ∂s grad  

where ( )1 Uγ= −s grad , . ,.  is the inner product in 3R  and  T  
is assumed regular as  →∞x ,  in particular 1( )T −= | x |O  . 

 Following the weak formulation, we will assume that on 
(1) (1)

2 2( ) ( )W WΩ Ω×  we have a bilinear form ( , )A u v  such that our 
problem may be written in terms of an integral identity 

                                         ( , )  A T v vf dS
Ω∂

= ∫  ( . ) 

valid for all (1)
2 ( )v W Ω∈ . Its solution is sought as a function 

(1)
2 ( )T W Ω∈   and f  is assumed square integrable on Ω∂ .  
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However, the gravimetric boundary-value problem is an oblique 
derivative problem and for this reason we have to put 

1 2( , ) ( , ) ( , )A u v A u v A u v= −  
where 

1( , ) ,A u v u v d
Ω

= ∫ grad grad x  

2( , ) , ,A u v v u d v u d
Ω Ω

= × +∫ ∫grad a grad x curl a grad x  

and 1 2 3( , , )a a a=a  is a vector field such that ia  and also 
( )i| x | curl a , 1,  2,  3i = , are Lebesgue measurable functions 

defined and bounded almost everywhere on Ω .  
 Moreover, we assume that on the boundary Ω∂  the vector 

,=σ s s n  and the field a  are coupled so that = + ×σ n a n.  
 Note also that the tie to the classical formulation above  
requires that  1( / )f U n gγ δ−= ∂ ∂ . 
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Let us consider now a sequence of functions 0[ ]m mu ∞
=  defined  

by the following equations 

1 1 2( , )  ( , )m mA u v vf dS A u v
Ω

+
∂

= +∫  

which are assumed to hold for all (1)
2 ( )v W Ω∈  and 0, 1, ,m = ∞… .  

 Under some limitations one can even show that 

2 1 1 1 1|| || || ||m m m mu u c u u+ + +− ≤ −  

where  c   is a positive constant such that  1c <  .  Then 
1

2 1 1 1 0 1|| || || ||m
m mu u c u u+
+ +− ≤ −  

so that for any integer  0p >  
1

1 1 1 0 1|| || || ||
1

m

m p m
cu u u u

c

+

+ +− ≤ −
−

 

and it follows immediately that  1 1|| || 0m p mu u+ +− →    as m →∞ . 
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This means that: 
[ ] 0 m mu ∞

=
 is a Cauchy sequence in (1)

2 ( )W Ω  and in the norm 
1/ 2

1 1|| . || ( . , . )=  it converges to a function (1)
2 ( )u W Ω∈ , which is 

the solution of our weakly formulated problem. 
 
 Under certain regularity assumptions the iterations may be 
even interpreted as follows: 

1 1( , )m mA u v vf dS
Ω

+
∂

= ∫     is valid for all    (1)
2 ( )v W Ω∈  

while 

tan ( )m
m

uf f
t

∂
= −

∂
s,n  

with / t∂ ∂  denoting the derivative in the direction of 
( ) /= − −t σ n | σ n |  - which obviously is tangential to Ω∂  (and  

exists almost everywhere on Lipschitz’ boundary Ω∂ ).  
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11.  Linear System 
In the sequel it is enough to consider just a space (1)

2 ( )H Ω  of 
those functions from (1)

2 ( )W Ω  which are harmonic in Ω  and to  
reformulate our problem, i.e. to look for (1)

1 2 ( )mu H Ω+ ∈  such that  

1 1( , )m mA u v vf dS
Ω

+
∂

= ∫  

holds for all (1)
2 ( )v H Ω∈ . We will approximate  1mu +   by means of 

( , ) ( , )
1

nn m n m
j jj

u c v
=

=∑  

where jv  are members of a function basis of (1)
2 ( )H Ω  and the 

coefficients  ( , )n m
jc   can be obtained from Galerkin’s system 

( , )
11
( , )n n m

j j k k mj
c A v v v f dS

Ω
=

∂

=∑ ∫  ,    1 , ,k n= …  
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In practice a modification of the bilinear form 1( , )A u v  is useful, 
to simplify the computation of  1( , )j kA v v .  In particular put 

( , ) ,A u v u v d
Ω∗

∗ = 〈 〉∫ grad grad x     for    (1)
2, ( )u v H Ω∗∈  

where  Ω∗ has a “simpler boundary”. However, for  jv   we have 
to take members of a function basis in (1)

2 ( )H Ω∗ . In (1)
2 ( )H Ω∗  

they generate a sequence of finite dimensional subspaces 

( ) span{ , 1 , , }n iH v i nΩ∗ = = …   ,    1,2,n = … 

We will suppose that Ω Ω∗⊆ . Thus, using Runge’s property of 
Laplace’s equation, we can take jv  (restricted to Ω ) as  
members of a function basis in (1)

2 ( )H Ω  too.  By analogy then 

( ) span{ , 1 , , }n iH v i nΩ = = …   ,    1, 2,n = … 

and it is clear that  ( ) ( )n nH H
Ω

Ω Ω∗= .  
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Thus for all  ( )nv H Ω∗∈  

                            ( , )( , ) ( )n m
mA u v vf dS F v

Ω

∗

∂

= +∫  (..) 

where  
( , ) ( , ) ( , )

1( ) ( , ) ( , ) ,n m n m n m

D

F v A u v A u v u v d∗= − = 〈 〉∫ grad grad x  

and D Ω Ω∗= − . The Eqs. above imply a continuation of ( , )n mu , 
and  Eq. (..) is an alternative expression of the original system.  
 
12.  Successive Approximations  
Our aim is to solve the integral identity (..) by successive  
approximations. Therefore, we will examine the sequence of 
functions 

( , ) ( , ) ( , ) ( , )
0 1 1, , , , ,n m n m n m n m

k ku u u u +  

defined by  
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( , )
1( , ) ( )n m

m kkA u v vf dS F v
Ω

∗
+

∂

= +∫   valid for all  ( )nv H Ω∗∈  

where 
( , )( ) ,n m

k k
D

F v u v d= 〈 〉∫ grad grad x  

Does the sequence ( , )
0[ ]n m

kku ∞
=  have a limit?  We first deduce that 

( , ) ( , )
2 1( , ) ( )n m n m

k kA u u v F v∗
+ +− =  

where 
( , ) ( , )

1( ) ( ),n m n m
k k

D

F v u u v d+= 〈 − 〉∫ grad grad x  

holds for all ( )nv H Ω∗∈ . It is clear that for ( , ) ( , )
1

n m n m
k ku u+ −  fixed, 

( )F v  is a bounded linear functional of the variable v . Indeed,  
using Hölder’s inequality, we easily obtain that 
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(1)
2

2
( )| ( ) | | | || ||H

D

F v M v d M v Ω∗≤ ≤∫ grad x  

where 
( , ) ( , ) 2

1| ( ) |n m n m
k k

D

M u u d+= −∫ grad x  

Thus the norm || ||F  of F  can be estimated from above by M , i.e. 
|| ||F M≤ . More than that, for functions of band limited spectrum 
we even have 

(1)
2 ( )| ( ) | || ||HF v M v Ωµ ∗≤  

where, 
(1)
2

( , ) ( , )
1 ( )|| ||n m n m

k k HM u u Ωµ ∗+≤ −  

and this immediately yields 

(1)
2

( , ) ( , )
1 ( )|| || || ||n m n m

k k HF u u Ωµ ∗+≤ −  
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Return now to the bilinear form ( , )A u v∗  and assume that 
3Ω Ω∗′ = −R  is a star-shaped domain with respect to the origin 

with Lipschitz’ boundary. Under this assumption  

(1)
2

2 2
( )|| || | |Wv v dΩ

Ω

α∗

∗

≤ ∫ grad x     

for all  (1)
2 ( )v W Ω∗∈    with  5α =  . Hence 

(1)
2

2
( )

1( , ) || ||HA u u u Ωα
∗

∗ ≥    holds for all  (1)
2 ( )u H Ω∗∈  

which means that ( , )A u v∗  is an elliptic bilinear form. 
 
Moreover, one can also verify that 

(1) (1)
2 2( ) ( )( , ) || || || ||H HA u v u vΩ Ω∗ ∗

∗ ≤  
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The properties of ( , )A u v∗  and the boundedness of  ( )F v  make it 
possible to apply Lax-Milgram’s theorem. It allows us to deduce 

(1) (1)
2 2

( , ) ( , ) ( , ) ( , )
2 1 1( ) ( )|| || || || || ||n m n m n m n m

k k k kH Hu u F c u uΩ Ωα∗ ∗+ + +− ≤ ≤ −  

where  c αµ= .  In consequence for any integer 0p >  

(1) (1)
2 2

1
( , ) ( , ) ( , ) ( , )

1 01 ( ) ( )|| || || ||
1

k
n m n m n m n m

k p k H H
cu u u u

cΩ Ω∗ ∗

+

+ +− ≤ −
−

 

which yields (1)
2

( , ) ( , )
1 ( )|| || 0n m n m

k p k Hu u Ω∗+ +− →  for k →∞ , provided 

that  1c < .  Thus ( , )
0[ ]n m

kku ∞
=  is a Cauchy sequence in (1)

2 ( )H Ω∗  

and clearly, it converges to a function (1)
2 ( )u H Ω∗∈ . Note that 

Ω Ω∗⊆  . 
 Obviously, the problem which needs discussion is the  
magnitude of the parameters α  and µ  in combination with  
the condition  1c αµ= <  .  
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13. Numerical simulations – Case I 
( i )  In quality of the domain  Ω   the exterior of the ETOPO5  

surface is used.  
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( ii ) The real gravity potential  W   is simulated by  EGM96  and 
the input data on the ETOPO5 - boundary surface are given 
by | | | |g W Uδ = −grad grad   (with  U  referred to GRS80 ). 
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( iii ) Surface integrals on the R.H.S. of Galerkin’s system of  
linear equations. 

For the numerical integration vertices of an icosahedron are  
projected onto the boundary surface. The triangles obtained in 
this way are used for generating hierarchical triangulation of the 
boundary. 
 
 
 
 
 
 
 
 
 
The surface integration then exploits principles of Romberg’s 
method combined with Richardson’s extrapolation up to the 
limit. It increases the accuracy and provides feedback in the con-
trol of the integration error. 
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( iv ) For the domain Ω∗ that has a “simpler boundary ” Ω∗∂  we 
take the sphere of radius  R  . 

 
 
 
 
 
 
 
 
Recall that in this case one can easily compute the reproducing 
kernel of the function space  (1)

2 ( )H Ω∗  . Indeed, for | | R≥x  

 1

0

1 2 1( , ) (cos )
4 1

n
n

n

nK z P
R n

ψ
π

∞
+

=

+
=

+∑x y  , where  | | R>y  , 

2

| || |
Rz =

x y
  and  ψ   is the angle between y  and x  .  

Ω∂  ...   - surfaceETOPO5

Ω∗∂

R
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In addition we also know that 

 
1 2 cos( , ) ln

4 1 cos
z L zK

R L
ψ

π ψ
⎛ ⎞+ −

= −⎜ ⎟−⎝ ⎠
x y   , 

where  2 1/ 2( 1 2 cos )L z zψ= − +  . 

 Recall in particular that the reproducing kernel ( , )K x y   
generates a function basis  

 ( ) ( , )i iv K=x x y   ,   1,2, ,i n= …   , 

in the space  (1)
2 ( )H Ω∗  ,  which is very suitable for approxima-

tion purposes. Moreover, basis functions of this kind yield  
entries in Galarkin’s matrix in a very straightforeword way. 

 Note finally that in our simulations the parking grid of the 
points iy  , 1,2, ,i n= …  ,  is given by vertices of the 6th level of 
the icosahedron refinement, so that the dimension of the  
subspace ( ) span{ , 1, , }n iH v i nΩ∗ = = …    is  n = 40962 .     !!! 
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( v ) Structure of Galerkin’s matrix for the approximation space 
( )nH Ω∗  of dimension n = 40962 generated by the  

reproducing kernel  ( , )K x y  
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14. Case I - Experiments 
In our numerical simulations the disturbing potential T W U= −  
is known. The figure shows its values on the ETOPO5 - surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
T  is used as an “exact ” solution and in the sequel is confronted 
with the outcome of individual iteration steps. 
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1st Iteration Step:  Comparison of the exact  T  with  1T   
The initial approximation  0 0T =  , so that we obtain  1T   from 

 ( )
1

1( , )
,

nA T v v g dS
Ω

δ∗

∂

=
〈 〉∫ s n

  valid for all  ( )nv H Ω∗∈  . 

 
The dimension of 
the approximation  
space ( )nH Ω∗  
is   
n = 40962  . 
 
 
 
 
Characteristics:  min 51GPU−  ,  max 89 GPU  ,  rms 6.1GPU  
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2nd Iteration Step:  Comparison of the exact  T  with  3T   

Here  3T   is defined for all  ( )nv H Ω∗∈  by 

 ( ) ( ) ( )
3 2 2

1( , ) [ , ]
,

n n nA T T v v g T dS
Ω

δ∗

∂

− = + 〈 〉
〈 〉∫ s grad
s n

  , 

 
The dimension of 
the approximation  
space ( )nH Ω∗  
is   
n = 40962  . 
 
 
 

Characteristics:  min 49 GPU−  ,  max 62 GPU  ,  rms 3.7 GPU  
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15. Numerical Simulation – Case II 
( i )  For the domain Ω∗ that has a “simpler boundary” Ω∗∂  an 

ellipsoid of revolution has been taken. 
 
 
 
 
 
 
 
 
( ii ) The potential T W U= −  as the “exact” solution has been 

derived from  EGM08. 
( iii ) The function basis of the approximation space ( )nH Ω∗  has 

been generated by the reciprocal distance, i.e. 

    
1( )

| |i
i

v =
−

x
x y

  ,   1,2, ,i n= …     with   n = 163842 

Ω∂  ...   - surfaceETOPO5

Ω∗∂

R
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( iv ) Parking grid for basis functions in the approximation space 
( )nH Ω∗  of dimension n = 163842 
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1st Iteration Step:  Comparison of the exact  T  with  1T  
The initial approximation  0 0T =  , so that we obtain  1T   from 

 ( )
1

1( , )
,

nA T v v g dS
Ω

δ∗

∂

=
〈 〉∫ s n

  valid for all  ( )nv H Ω∗∈  . 

 
The dimension of 
the approximation  
space ( )nH Ω∗  
is   
n = 163842  . 
 
 
 
 
Characteristics: min ca 5 GPU− , max ca 5 GPU ,   rms GPU2.1  
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2nd Iteration Step:  Comparison of the exact  T  with  3T  

Here  3T   is defined for all  ( )nv H Ω∗∈  by 

 ( ) ( ) ( )
3 2 2

1( , ) [ , ]
,

n n nA T T v v g T dS
Ω

δ∗

∂

− = + 〈 〉
〈 〉∫ s grad
s n

  , 

 
The dimension of 
the approximation  
space ( )nH Ω∗  
is   
n = 163842  . 
 
 
 

Characteristics:  rms GPU0.38   !!! 
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( v )  Oblique derivative effect for the ETOPO5 boundary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  
All computations done in CINECA (Consorzio Interuniversitario 
del Nord Est Italiano Per il Calcolo Automatico) in Bologna. 
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16.  Reproducing Kernel 
For approximation purposes the existence of a reproducing  
kernel  in a particular Hilber space is extremely useful. 
 For instance in  (1)

2 ( )W Ω   consider the inner product 

 
3

1
( , ) ( , )

i i i

u vu v A u v d
x xΩ=

∂ ∂
= =

∂ ∂∑ ∫ x  

that induces a norm  1/ 2|| || ( , )u u u≡   which is equivalent to 1|| ||u   
 Let us try now to find a kernel ( , )K K= x y  which has a  
reproducing property  with respect to the inner product above, i.e. 

 
3

1

( , ) ( ) ( )
i i i

K v d v
x xΩ=

∂ ∂
=

∂ ∂∑ ∫
x y x x y     holds for all    (1)

2 ( )v W Ω∈  . 

As regards (1)
2 ( )W Ω , however, there is not too much chance to 

find K  of the quality as above. This may be deduced from  
Sobolev’s lemma on embeddings. 
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17.  Restriction to Harmonic Functions 
The situation substantially changes if we consider the space 

(1) (1)
2 2( ) ( )H WΩ Ω⊂   of those functions from  (1)

2 ( )W Ω   which are 
harmonic in  Ω  .  

 In case of some simple domains, we are even able to find  
kernels which in (1)

2 ( )H Ω  have the reproducing property. In 
(1)
2 ( )H Ω  in particular it reduces to 

 
( , )( ) ( )x

x

Kv d S v
nΩ∂

∂
= −

∂∫
x yx y      valid for all    (1)

2 ( )v H Ω∈  

since the kernel ( , )K x y  must be an element of (1)
2 ( )H Ω  . 

 
4 Example – Reproducing Kernel for a Sphere 
Assuming e.g. that RSΩ ≡   and recalling the well-known integral 
representation of the solution of the (exterior) Dirichlet problem, 
we can immediately conclude that 
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( , ) ( , ) 1 ( , )

| | 4 | |x

K K G
n π

∂ ∂ ∂
= = −

∂ ∂ ∂
x y x y x y

x x
     for    | | R=x  , 

where 

 
1 1( , )

| | | | | |
RG = −

− −
x y

x y x x y
 

is Green’s function. Hence, in our spherical case we easily obtain 

 1

0

1 2 1( , ) (cos )
4 1

n
n

n

nK P
R n

ρ ψ
π

∞
+

=

+
=

+∑x y     where   
2

| || |
Rρ =

x y
 . 

It is also not extremely difficult to find that 

 
1 2 cos( , ) ln

4 1 cos
LK

R L
ρ ρ ψ

π ψ
⎛ ⎞+ −

= −⎜ ⎟−⎝ ⎠
x y  

where  21 2 cosL ρ ψ ρ= − + ,  
see e.g. (Tscherning, 1975), (Neyman, 1979), (Holota, 2004, 2011) 



 51

18. Galerkin’s System and the  
Reproducing Kernel 

Suppose now that , 1 , ,i iΩ∈ = ∞y …  is a sequence of points 
which is dense in Ω  then the linear manifold  

 { }span ( , ), 1, ,iH K i= = ∞x y …  

is densely embedded in (1)
2 ( )H Ω . Hence ( , )K x y  gives us a  

possibility to generate finite dimensional subspaces 

 { }span ( , ), 1, ,n iH K i n= =x y …    in   (1)
2 ( )H Ω   

such that 1n nH H +⊆  and lim dist( , ) 0nn
v H

→ ∞
=  for all (1)

2v H∈ , i.e., 

 (1)
2lim nn

H H
→∞

=  . 

This is important since it enables us to approximate the solution 
by means of the linear combinations 
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( )

1

n
n

n j j
j

u c v
=

= ∑      where    ( ) ( , )j jv K=x x y  . 

In addition, in Galerkin’s system  

( )

1
( , )

n
n

j j k k
j

c A v v v f dS
Ω= ∂

=∑ ∫  ,     1, ,k n= …  

the elements ( , )j kA v v   may be immediately expressed by 

( , ) ( , )j k j kA v v K= y y       ( !!! ) 

in view of the reproducing property of the kernel. 
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19.  Reproducing Kernel for an Ellipsoid 
The possibility to express ( , )j kA v v  by means of ( , )K x y  leads 
us to an attempt to construct a kernel ( , )ellK x y  which has the  
reproducing property also in case that Ω  is the exterior ellΩ  of 
an oblate ellipsoid of revolution of semi-axes a  and b, a b≥ . 
 
 Naturally, we will use ellipsoidal coordinates u , β , λ . They 
are related to 1x , 2x , 3x  by the equations 

2 2
1 cos cosx u E β λ= +  ,   2 2

2 cos sinx u E β λ= +  ,   3 sinx u β=  

where 2 2E a b= − .  
 
Note. In the coordinates u , β , λ  the boundary ellΩ∂   of  ellΩ   is 
defined by  u b= . 
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In analogy to the spherical case we now have  
( , )( ) ( )

ell

ell
x

x

Kv d S v
nΩ∂

∂
= −

∂∫
x yx y  

and subsequently also  

                   
( , ) ( , )1

4
ell ell

x x

K G
n nπ

∂ ∂
= −

∂ ∂
x y x y

      for     xu b=  (3) 

where ( , )ellG x y  is Green’s function related to Dirichlet’s problem 
formulated for  ellΩ . 
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Referring to (Holota, IAG Symposia, 2004) and (Holota, Studia 
geophysica et geodaetica, 2011), we can deduce from Eq. (3) that 

   
0

0

1

1( , ) (2 1) (sin ) (sin )
4

( )!2 (sin ) (sin )cos ( )
( )!

ell n xy n x n y
n

n

nmxy nm x nm y x y
m

K n K P P
b

n m K P P m
n m

β β
π

β β λ λ

∞

=

=

⎡= + +⎣

− ⎤+ − ⎦+

∑

∑

x y
 (4) 

with 

             
1

0
02

0 0

( )( ) ( ) ( )
( ) ( )

nm ynm x nm
nmxy nm

nm nm

Q ziEb Q z dQ zK Q z
dzQ z Q za

−
⎡ ⎤= ⎢ ⎥⎣ ⎦

 (5) 

where nmP  and nmQ  are Legendre’s functions of the 1st and the 
2nd kind, while 

x
x

iuz
E

=  ,   y
y

iu
z

E
=  ,   0

ibz
E

=    and   1i = − . 
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Recall  also that  nmQ   can be expressed as 
1

2 2
2

2 !( )! 1 1 2 3 1( ) ( 1) ( 1) , , ;
(2 1)! 2 2 2 1

nn
m

nm
n n m n m n m nQ z z F

n z

+
−+ + + − + +⎛ ⎞= − − ⎜ ⎟+ −⎝ ⎠

 

where  F   is a hypergeometric function  and that, passing to  
hypergeometric series, 

2 2
1

1 ( ) ( ) 1, , ; 1
( ) !1 1

n
n n

z
n n

a bF F a b c
c nz z

∞

=

⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∑  

with  
( ) ( 1) ( 1), 1,2,3na a a a n n= + + − =… … 

( ) ( 1) ( 1), 1,2,3nb b b b n n= + + − =… … 

( ) ( 1) ( 1), 1,2,3nc c c c n n= + + − =… … 

 
Note. The series converges which may be directly verified by  
using e.g. d’Alembert convergence criterion. 
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In Fig. 1 the kernel ( , )ellK x y  is illustrated for two configurations 
and an ellipsoid of parameters given by the GRS80 system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Kernel function ( , )ellK x y  for 45yβ = °(north) and 0yλ = °: 
(Left) 1.001yu b= , (Right) 1.1yu b= . 

Note that x  is the moving point with xu b= . 
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20. Computational Aspects - Approximation of 
the Kernel 

The implementation of  
( , )ellK x y  

on the basis of Eqs. (4) and (5) is feasible, but extremely  
demanding in case that all the entries of Galerkin’s matrix and 
right sides in Galerkin’s system have to be computed, e.g. in 
high resolution modelling of the solution.  
 
 This motivates studies leading to (analytical) summation of 
the series representing the kernel. In solving this problem we 
used some approximations.  
 
After elementary modifications we have 

0

22

2 2 2 2
0 0

1 1 ( 1) ( 1) 1 1
2 ( 1)1 1 1 1z z

ab a a b bF F
c c cz z z z

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + ⎛ ⎞⎢ ⎥= + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟+− − − −⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 



 59

Thus, e.g., in a 20km layer close above the ellipsoid 
4

2 2
0

1 1 0,000046
1 1

e
z z

− ≤ =
− −

   and 

22
6

2 2
0

1 1 2 0,0000006
1 1

e
z z

⎛ ⎞⎛ ⎞ − ≤ =⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠
   etc. 

In the sequel, therefore, considering these estimates, we put 
1

0 0

( )( )
( ) ( )

nm y nnm x

nm nm

Q zQ z
Q z Q z

ρ +≈     where    
2

2 2 2 2
x y

a

u E u E
ρ =

+ +
 

Similarly recalling that   1,2 2
( 1) 1
1 1

nm
nm n m

dQ n z n mQ Q
dz z z +

+ − +
= −

− −
  

and putting  1, 0

0

( ) 1
( ) 2 3

n m

nm

Q z n m E
Q z n ia
+ + +

≈
+

    we arrive at 

2 2 2
0

2
0

1 ( ) ( 1)( 1) 1
( ) ( 1)(2 3)

nm

nm

dQ z Eb E n mi n
Q z dz ab n na

⎡ ⎤+ −
≈ + +⎢ ⎥+ +⎣ ⎦
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Hence 

 1n
nmxy nmK ρ κ+≈   with   

2 2 21 ( 1)1
1 ( 1)(2 3)nm

E n m
n ab n n

κ
⎡ ⎤+ −

= −⎢ ⎥+ + +⎣ ⎦
 (6) 

Below  nmκ  is compared with nmxyκ  (exact), i.e.  
( 1)n

nmxy nmxyKκ ρ− +=  

computed numerically from Eqs. (4) and (5).  
 
The difference  

nmxy nmxy nmδκ κ κ= −  

and its relative counterpart  
( ) /rel

nmxy nmxy nmxyδ κ δκ κ=  

are plotted in Fig. 2. 
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Figure 2. (Above) absolute difference nmxyδκ ,  (Below) relative 

difference ( )rel
nmxyδ κ : 

(Left) xu b=  and 1.001yu b= ,  (Right) xu b=  and 1.1yu b=  

δκn,0,x,y   
δκn,360,x,y   
δκn,1800,x,y   

δκn,0,x,y   
δκn,360,x,y   
δκn,1800,x,y   

δ(rel)κn,0,x,y   
δ(rel)κn,360,x,y   
δ(rel)κn,1800,x,y   

δ(rel)κn,0,x,y   
δ(rel)κn,360,x,y   
δ(rel)κn,1800,x,y   
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Return now to ( , )ellK x y  with coefficients nmxyK  given by Eq. (6). 
 Denoting by ψ  the angular distance of points ( , )x yβ λ  and 
( , )y yβ λ  on a sphere, when β  and λ  are interpreted as spherical 
latitude and longitude, respectively and using the well-known 
Legendre’s addition theorem, we can write  

(1) (2) (3)
2 2

1( , ) ( , ) ( , ) ( , )
4 4 4ell

E EK K K K
b ab abπ π π

= − +x y x y x y x y  (7) 

with                   (1) 1

0

2 1( , ) (cos )
1

n
n

n

nK P
n

ρ ψ
∞

+

=

+
=

+∑x y  

(2) 1

0

2 1( , ) (cos )
2 3

n
n

n

nK P
n

ρ ψ
∞

+

=

+
=

+∑x y     and 

2
(3) 1

2 2
1

(cos )2 1( , )
( 1) (2 3)

n n

n

PnK
n n

ψρ
λ

∞
+

=

∂+
= −

+ + ∂∑x y  

for the last term also (Holota, 2003) has been used. 
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20.1.  Summation of K (1) 
We first split the term into two parts 

(1) 1 1

0 0

1( , ) 2 (cos ) (cos )
1

n n
n n

n n
K P P

n
ρ ψ ρ ψ

∞ ∞
+ +

= =

= −
+∑ ∑x y  

Then, recalling  

0

1(cos )n
n

n
P

L
ρ ψ

∞

=

=∑    where   21 2 cosL ρ ψ ρ= − +  

we after some manipulation and integration arrive at 
(1) 2 cos( , ) ln

1 cos
LK

L
ρ ρ ψ

ψ
+ −

= −
−

x y  

see e.g. (Tscherning, 1975), (Neyman, 1979), (Holota, 2004, 2011) 
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20.2.  Summation of K (2) – Elliptic Integrals 
One can easily verify that 

(2) 1 1

0 0

1( , ) (cos ) 2 (cos )
3

n n
n n

n n
K P P

n
ρ ψ ρ ψ

∞ ∞
+ +

= =

= −
+∑ ∑x y  

The summation of the 2nd term is more complex. Putting 
1

0

1 (cos )
3

n
n

n
S P

n
ρ ψ

∞
+

=

=
+∑  ,  we deduce that    

1 1
2 2

dS S
d Lρ ρ

+ =  

This is an elementary differential equation. Its general solution is 
( ) 1

2
CS d

L
ρψ ρ

ρ ρ
= + ∫   ,  ( )C ψ    is an arbitrary function of ψ   

while  2nd term  is an  elliptic integral.  
 To apply a standard approach for its computation we express 
it in a trigonometric form.  For this purpose we replace 

ρ   by a new variable  0,
2
πϕ∈〈 〉   according to  2tan

2
ϕρ =  
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After some algebra we arrive at 

[ ]
1 1

2 2 1( ) tan 1 sin tan ( , ) 2 ( , )
2 2 2

S C k k kϕ ϕψ ϕ ϕ ϕ
− −

⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

F E  

where 
2 2cos

2
k ψ
=   , 

2 2
0

( , )
1 sin

dk
k

ϕ ϕϕ
ϕ

=
−

∫F    and   2 2

0

( , ) 1 sink k d
ϕ

ϕ ϕ ϕ= −∫E  

are the Legendre (incomplete) elliptic integrals of the first and 
the second kind. Moreover, comparing the left and the right hand 
side for 0ρ =  ( i.e. 0ϕ = ), we obtain ( ) 0C ψ =  and subsequently 

[ ]
1

(2) 2 2( , ) 2 1 sin tan ( , ) 2 ( , )
2

K k k k
L
ρ ϕϕ ϕ ϕ

−
⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

x y F E  
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20.3.  Summation of K (3) – Elliptic Integrals 
The term (3)K , i.e. 

2
(3) 1

2 2
1

(cos )2 1( , )
( 1) (2 3)

n n

n

PnK
n n

ψρ
λ

∞
+

=

∂+
= −

+ + ∂∑x y  

requires also a special treatment. First we compute 
22 2 2

2 2 2
(cos ) (cos ) cos (cos ) cos

cos(cos )
n n nP d P dP

dd
ψ ψ ψ ψ ψ

λ ψλ ψ λ
∂ ∂ ∂⎛ ⎞= +⎜ ⎟∂∂ ∂⎝ ⎠

 

where 
2

2 2 2 2 2 2cos cos cos sin ( ) sin sin cosx y x y xy y
ψ β β λ λ ψ α β

λ
∂⎛ ⎞ = − =⎜ ⎟∂⎝ ⎠

 

2

2
cos cos cos cos( ) sin sin cosx y x y x y

ψ β β λ λ β β ψ
λ

∂
= − − = −

∂
 

Then, using Legendre’s differential equation 
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2

2 2 2
(cos ) (cos )2cos ( 1) (cos ) 0

cos(cos ) sin sin
n n

n
d P dP n n P

dd
ψ ψψ ψ

ψψ ψ ψ
+

− ⋅ + =  

we obtain 
22

2 2
(cos ) (cos ) ( 1) cos(*) (cos )

cos sin
n n

n
P dP n n P

d
ψ ψ ψ ψ

ψ λλ ψ
∂ + ∂⎛ ⎞= − ⎜ ⎟∂∂ ⎝ ⎠

 

with 
22

2 2
2 2

cos 2cos cos(*) sin sin (1 2sin cos ) cos
sin x y xy y

ψ ψ ψ β β α β ψ
λλ ψ

∂ ∂⎛ ⎞= + = − −⎜ ⎟∂∂ ⎝ ⎠
 

Recalling finally that 

[ ]12
(cos ) 1 cos (cos ) (cos )
cos sin

n
n n

dP n P P
d

ψ ψ ψ ψ
ψ ψ +

+
= −  

we get 
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(3) 2 2

1 2( , ) sin cos (*)xy yK S Sα β= −x y  
with 

1
1

1

(2 1) (cos )
( 1)(2 3)

n
n

n

n nS P
n n

ρ ψ
∞

+

=

+
=

+ +∑  

and  

[ ]2 21 222
1 cos

sin
S S Sψ

ψ
= −  

where 
1

21
1

2 1 (cos )
( 1)(2 3)

n
n

n

nS P
n n

ρ ψ
∞

+

=

+
=

+ +∑  

and  

22
2

2 1 (cos )
(2 1)

n
n

n

nS P
n n

ρ ψ
∞

=

−
=

+∑  

Note. In the second term we somewhat adjusted the index  n. 
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 In the sequel we approach the summation in  1S   first. We can 
split it as follows 

(1) (2)
1 ( , ) 3 ( , )S K K= − +x y x y  

so that, recalling Sec. (7.1) and (7.2), 

[ ]
1

2 2
1

cosln 6 1 sin 3 tan ( , ) 2 ( , )
1 cos 2

LS k k k
L
ρ ρ ψ ϕϕ ϕ ϕ

ψ

−+ − ⎛ ⎞= + − − − −⎜ ⎟− ⎝ ⎠
F E  

 Now we treat 2S  and will start with the 21S - term. One can  
easily verify that  

(1) (2)
21 ( , ) 2 ( , )

3
S K Kρ

= − + −x y x y  

thus 

[ ]
1

2 2
21

cosln 4 1 sin 2 tan ( , ) 2 ( , )
3 1 cos 2

LS k k kρ ρ ψ ϕϕ ϕ ϕ
ψ

−+ − ⎛ ⎞= − − + − + −⎜ ⎟− ⎝ ⎠
F E
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 Finally, we have to discuss the 22S - term. We split it again, so 
that 

22
1 0

1 14 (cos ) 4 (cos )
3 2 1

n n
n n

n n
S P P

n n
ρ ρ ψ ρ ψ

∞ ∞

= =

= − − − +
+∑ ∑  

On the right hand side for the 3rd term we derive that 

1

1 1 cos(cos ) ln
2

n
n

n

LP
n

ρ ψρ ψ
∞

=

+ −
= −∑  

and with the aid of the elliptic integrals of the first kind we obtain  
1

0

1 1(cos ) tan ( , )
2 1 2 2

n
n

n
P k

n
ϕρ ψ ϕ

−∞

=

⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
∑ F . 

Hence 
1

22
1 cos4 cos ln 2 tan ( , )

3 2 2
LS kρ ρ ψ ϕψ ϕ

−+ − ⎛ ⎞= − − + + ⎜ ⎟
⎝ ⎠

F  
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21.  Approximation Computation of the Kernel 
In this section ( , )ellK x y  computed on the basis of Eq. (7) and 
formulas derived in sections 20.1 - 20.3 is compared with 

( , )ellK x y  (exact) computed from Eqs. (4) and (5).  
 For the ellipsoid of parameters given by the GRS80 the  
difference is illustrated in the figures below. On the left side 
(blue) they show  

(1) 11( , ) ( , ) ( , ) ( , )
4ell ellK K K K

b
δ

π
−⎡ ⎤= −⎢ ⎥⎣ ⎦

x y x y x y x y  

while the right side (green) illustrates 
1( , ) ( , ) ( , ) ( , )ell ell ellK K K Kδ −⎡ ⎤= −⎣ ⎦x y x y x y x y  

The values are in ppm ( i.e. 610− ).  
 In constructing the figures x  was taken for the moving point 
with xu b=  and y  for the computation point with 0β =  and 

0λ = . Moreover, three values of yu  were considered.  
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Figure 3a. (Left) ( , )Kδ x y  and (Right) ( , )Kδ x y  for:  
1.001yu b= , i.e. y  ca 6.3km above the ellipsoid. 

 
 
 
 
 
 
 

Figure 3b. (Left) ( , )Kδ x y  and (Right) ( , )Kδ x y  for:  
1.005yu b= , i.e. y  ca 32km above the ellipsoid. 
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Figure 3c. (Left) ( , )Kδ x y  and (Right) ( , )Kδ x y  for:  
1.04yu b= , i.e. y  ca 260km above the ellipsoid. 

 
The figures indicate that there are good reasons to expect that 

( , )ellK x y  will be an efficient tool for solving potential problems 
in gravity field studies, e.g., computing the disturbing potential. 
 
 The problems mentioned above were investigated and also 
added extensive numerical tests in (Holota and Nesvadba 2007, 
2012) and (Nesvadba et al. 2007). 
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22.  Integral Kernels in Data Combinations 
It is well-known in physical geodesy that the solution of Stokes’ 
problem is given by 

 ∑
∞

=

+

−
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

2

1

1

2

0 1
1)(

n
n

n

g
nr

RRT
r
RT

r
RxT ∆    ,     | |r = x  

and that for r R=  and some assumptions concerning 0T  and 1T , 

( )
4
RT S g d

σ
ψ ∆ σ

π
= ∫     with    

2

2 1( ) (cos )
1 n

n

nS P
n

ψ ψ
∞

=

+
=

−∑  

representing the famous Stokes kernel. 
 Similarly, when using gravity disturbances we have 

 
1

0

1( )
1

n

n
n

RT x R g
r n

δ
+∞

=

⎛ ⎞= ⎜ ⎟ +⎝ ⎠
∑  

 ( )
4
RT K g d

σ
ψ δ σ

π
= ∫     and    

0

2 1( ) (cos )
1 n

n

nK P
n

ψ ψ
∞

=

+
=

+∑  

that sometimes is called  Neumann-Koch function. 
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Naturally, the use of global gravity field models stimulates some 
modification of this approach. E.g. we put 

2 1

0 1 1
1( )

1

N n

N n
n N

R R R RT x T T T R g
r r r r n

∆
+∞

−
=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑  

or 
2 1

0 1 1
1( )

1

N n

N n
n N

R R R RT x T T T R g
r r r r n

δ
+∞

−
=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑  

compute gravity anomalies g∆  or disturbances gδ  with  
respect to an adopted model, put 0nT =  for 0,1, 2, , 1n N= −…  
and subsequently work with the reduced Stokes or Neumann-
Koch kernel 

( ) 2 1( ) (cos )
1

N
red n

n N

nS P
n

ψ ψ
∞

=

+
=

−∑   or  ( ) 2 1( ) (cos )
1

N
red n

n N

nK P
n

ψ ψ
∞

=

+
=

+∑  

Graphically the kernels are illustrated in the figures that follow. 
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The approach as above is straightforward, but not the only  
concept possible.  
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ΩTOPO 

Re

Ri

ΓTOPO 

Ω
Re

Ri

Data from the GOCE mission and terrestrial gravity measure-
ments are two different sources of information. Their combina-
tion has an essential tie to potential theory.  
 Within the space-wise approach we will discuss the use of 
gravity field information contained in satellite-only models or  
alternatively in GOCE gradiometric data in common with terres-
trial gravity measurements  
 In the sequel Ω  means a solution domain bounded by two 
surfaces. With some simplification we suppose that Ω  is 
bounded by two spheres of radius iR  and eR ,  i eR R< . 
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23.  Potential Problems 
We consider first gravimetry and a satellite-only model, thus the 
following problem  
                                          0T∆ =       in      Ω  

 
2

i

T T g
r R

∆∂
+ = −

∂
  for  ir R=       and      T t=   for  er R=  

Here: g∆  is the gravity anomaly 
  t  means the input from an available satellite-only model 
The domain Ω  is bounded. ⇒ Therefore, the solution 

( , , )T r ϕ λ= ,  we are looking for, has generally the form 

                                               ( ) ( )i eT T T= +  (3) 

    
1

( ) ( )

0
( , )

n
i ii

n
n

RT T
r

ϕ λ
+∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑       and      ( ) ( )

0
( , )

n
e e

n
n e

rT T
R

ϕ λ
∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  

where  ( )i
nT   and  ( )e

nT   are the surface spherical harmonics. 
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Using the orthogonality of spherical harmonics, we obtain a  
linear system for  ( )i

nT   and  ( )e
nT ,  that for and individual  n  yields 

                                 ( )
( )
( 2) n

i i n n
n p

n

R g n q tT
D

∆ + +
=  (4a) 

and 

                                 
1

( )
( )

( 1)n
e i n n

n p
n

R q g n tT
D

∆+ − −
= −  (4b) 

where  
( ) 2 1( 2)(1 ) 3p n
nD n q += + + −   is the determinant,  /i eq R R=  

while ng∆  and nt  are surface spherical harmonics in the  
developments of  g∆   and  t  , respectively, i.e. in 

0( , ) Σ ( , )n ng g∆ ϕ λ ∆ ϕ λ∞
==       and      0( , ) Σ ( , )n nt tϕ λ ϕ λ∞

== . 
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Similarly for gravimetry and gradiometry the problem is to find T  
such that 
                                            0T∆ =      in     Ω  

 
2

i

T T g
r R

∆∂
+ = −

∂
   for   ir R=      and     

2

2
T G

r
∂

=
∂

   for   er R=  

The input from satellite gradiometry is symbolized by 
0( , ) Σ ( , )n nG Gϕ λ ϕ λ∞

== , where nG  are the respective surface 
spherical harmonics.  
 Using the orthogonality of spherical harmonics again, we for 
any individual  n  arrive at 

           ( ) 2
( )
1( 1) ( 2)i n

n i n e n g
n

T R n n g R n q G
D

∆⎡ ⎤= − + +⎣ ⎦  

( ) 1 2
( )
1( 1)( 2) ( 1)e n

n i n e n g
n

T R n n q g R n G
D

∆+⎡ ⎤= − + + − −⎣ ⎦  

where   ( ) 2 2 2 1( 1) ( 1)( 2)g n
nD n n n n q += − + + + . 
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24.  Compatibility  
In both the cases we found a solution, which is harmonic in Ω . 
The problem, however, is that the continuation of T  for er R>  
need not be regular at infinity, i.e., if analytically extended, then 
for r →∞  it does not decrease as /c r  (c  is a constant) or faster.  
 This can be considered a consequence of measurement  
errors. The data given for ir R=  are enough to determine a har-
monic function in 3{ ; }ext ir RΩ ≡ ∈ >x R  and thus in extΩ Ω⊂ .  
 The data for er R=  have the nature of excess data and give 
rise to (“internal”) terms   ( )( / )n e

e nr R T    not regular at infinity.  
 Thus  

 ( ) ( )i eT T T= +  ,     
1

( ) ( )

0

n
i ii

n
n

RT T
r

+∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑  ,     ( ) ( )

0

n
e e

n
n e

rT T
R

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  

offers the general solution in the domain Ω , but from the  
physical point of view its justification rests on a formal basis.  
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Nevertheless the term  ( )eT   gives the possibility to confront the 
two data sources considered.  To see an example suppose that,  

                            
1

( ) ( )

0
( , )

n
EGM EGMi

n
n

RT T
r

ϕ λ
+∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑  (9a) 

and 

                            
1

( ) ( )

0
( , )

n
GOC GOCi

n
n

RT T
r

ϕ λ
+∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑  (9b) 

are the disturbing potentials related to the EGM2008 and to the 
GOCE based  EGM-GOC-2  satellite-only model, respectively.  
Representing now:  

0( , ) Σ ( , )n ng g∆ ϕ λ ∆ ϕ λ∞
==  in terms of  EGM2008  and 

 0( , ) Σ ( , )n nt tϕ λ ϕ λ∞
==  in terms of  EGM-GOC-2, we know that 

( )1 EGM
n n

i

ng T
R

∆ −
=      and     1 ( )n GOC

n nt q T+=  
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Hence from Eq. (4b) we get that  

 ( ) ( ) ( ) ( )e p GOC EGM
n n n nT c T T⎡ ⎤= −⎣ ⎦   with   

1
( )

2 1
( 1)

( 2)(1 ) 3

n
p

n n
n qc

n q

+

+
−

=
+ + −

 

in case of  gravimetry and a satellite-only-model.  
 Similarly, considering  gravimetry and gradiometry, we get  

 ( ) ( ) ( ) ( )e g GOC EGM
n n n nT c T T⎡ ⎤= −⎣ ⎦   with  

1
( )

2 2 2 1
( 1)( 1)( 2)

( 1) ( 1)( 2)

n
g

n n
n n n qc

n n n n q

+

+
− + +

=
− + + +

 

 
 
 
The coefficients  

  ( )p
nc   and  ( )g

nc   

are illustrated  
on the right  
in  Figure 1. 

( )g
nc
( )p
nc
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A better insight offers a plot of degree variances ( )var{ }e
nT  .  

Recall, therefore, that 

   ( ) ( ) ( )
0

( , ) cos sin (sin )nEGM EGN EGN
n nm nm nmm

T C m S m Pϕ λ δ λ δ λ ϕ
=
⎡ ⎤= +⎣ ⎦∑  

and 

   ( ) ( ) ( )
0

( , ) cos sin (sin )nGOC GOC GOC
n nm nm nmm

T C m S m Pϕ λ δ λ δ λ ϕ
=
⎡ ⎤= +⎣ ⎦∑  

where, ( )EGN
nmCδ , ( )EGN

nmSδ and ( )GOC
nmCδ , ( )GOC

nmSδ  are coefficients 
of fully normalized surface spherical harmonics.  Hence 

   
{ } { }

{ }

2( ) ( )

2 2 2(*) ( ) ( ) ( ) ( )
0

var e e
n n

n GOC EGM GOC EGM
n nm nm nm nmm

T M T

c C C S Sδ δ δ δ
=

⎡ ⎤= =⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑
 

Here M  stands for the average over the whole unit sphere, while 
(*)
nc   equals  ( )p

nc  or  ( )g
nc   in dependence of whether we consider 

our 1st or 2nd boundary value problem.  
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The diagram computed for EGM2008 and EGM-GOC-2 is in  
Figure 2 (left). (Note that for better illustration the square root of 

( )var{ }e
nT  is plotted.)  

 On the right of Figure 2 on can see the plot of the square root 
of ( ) ( )var{ }GOC EGM

n nT T−  for comparison. 
 
 
 
 
 
 
 
 
 
 
Figure 2. (left) The diagram of ( )var{ }e

nT . (right) The diagram of 
( ) ( )var{ }GOC EGM

n nT T− . 

( ) ( ) ( )| | var{ }−p GOC EGM
n n nc T T

( ) ( ) ( )| | var{ }−g GOC EGM
n n nc T T

( ) ( ) ( )| | var{ }−p GOC EGM
n n nc T T

( ) ( ) ( )| | var{ }−g GOC EGM
n n nc T T

( ) ( )var{ }−GOC EGM
n nT T
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We also add a global chart of  ( )eT  and of  ( ) ( )GOC EGM
n nT T−  for our 

1st problem (gravimetry and a satellite-only-model). 
 
 
 
 
 
 
 
Figure 3.   ( )eT  for ir R=  (left) and for er R=  (right). 
 
 
 
 
 
 
 
Figure 4.   ( ) ( )GOC EGM

n nT T−  for ir R=  (left) and for er R=  (right). 
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25.  Optimization 
In solving the incompatibility (overdetermined problems) above, 
we will look for a harmonic function f , regular at infinity that 
minimizes the functional 

2( ) ( )f f T d
Ω

Φ = −∫ x  

We suppose that 2( )extf H Ω∈ , where 2( )extH Ω  is a space of 
harmonic functions with inner product 

2
1( , )

ext

f g fg d
rΩ

≡ ∫ x  

The functional Φ  attains its minimum in 2( )extH Ω . Hence,  
assuming Φ  has its minimum at a point 2( )extf H Ω∈ , its  
Gâteaux’ differentials equals zero at f . This yields 

                                          fv d Tv d
Ω Ω

=∫ ∫x x  (18) 

for all 2( )extv H Ω∈ .  
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Eq. (18) represents Euler’s necessary condition for Φ  to have a 
minimum at f . It is a starting point for a numerical solution.  
 We put 1( / ) ( , )n

nm i nmv R r Y ϕ λ+= , denoting by nmY  Laplace’ 
surface spherical harmonics.  
 Subsequently, 0Σ Σm n

n m n nm nmf f v∞ =
= =−= , while nmf  are scalar  

coefficients. After some algebra we then easily obtain 

  
1

( ) ( )

0

n
i ei

n n n
n

Rf T T
r

α
+∞

=

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎝ ⎠∑    with  
2

2
2 1

(2 1)(1 )
2(1 )

n
n n

n q q
q

α −
−

− −
=

−
 (19) 

 
Figure 5. Values of  nα   for 

6378iR km=  and two cases of eR  :  
250e iR R km= +  and  
400e iR R km= + , i.e., for   

0.96228q =  and 0.94099q = ,  
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Clearly, the optimized solution f  is partially generated by ( )e
nT , 

but in contrast to Eq. (3), the influence of ( )e
nT  is modified by the 

factor nα . This is illustrated in Figure 6.  (It is interesting to com-
pare both the diagrams with Figure 2.) 
 
 
 
 
 
 
 
 
 
Figure 6.  The diagrams of:                                   Figure 2.  

( )var{ }e
n nTα  and 1 ( )var{ }n e

n nq Tα+                  (For comparison) 

in case of the 1st problem (left)  
and the 2nd problem (right). 

1 ( ) ( ) ( )| | var{ }+ −n p GOC EGM
n n n nq α c T T

( ) ( ) ( )| | var{ }−p GOC EGM
n n n nα c T T

1 ( ) ( ) ( )| | var{ }+ −n g GOC EGM
n n n nq α c T T

( ) ( ) ( )| | var{ }−g GOC EGM
n n n nα c T T ( ) ( ) ( )| | var{ }−p GOC EGM

n n nc T T

( ) ( ) ( )| | var{ }−g GOC EGM
n n nc T T
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26. Optimized Solution – Influence of Input Data 
To see the influence of the input data g∆ , t  and G  on the  
optimized solution  f   we have to return to the original structure 
of the harmonics  ( )i

nT   and  ( )e
nT .  

 In particular, for the 1st problem (gravimetry and a satellite-
only model) we obtain 

                     
1

( ) ( )

0 1

n
i ei i

n n n n
n

R Rf A g A t
r n

∆
+∞

=

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎣ ⎦
∑  (20) 

with 

 
1

( )
( )

( 1)(1 )n
i n

n p
n

n qA
D

α +− −
=     and    ( )

( )
( 2) ( 1)n

e n
n p

n

n q nA
D

α+ + −
=  (21) 

where                      ( ) 2 1( 2)(1 ) 3p n
nD n q += + + −  

The values of the coefficients ( )i
nA  and ( )e

nA  are in Figure 7 (left) 
that will follow  
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Similarly, for the 2nd problem (gravimetry and gradiometry) we 
have 

 
1 2

( ) ( )

0 1 ( 1)( 2)

n
i ei i e

n n n n
n

R R Rf A g A G
r n n n

∆
+∞

=

⎡ ⎤⎛ ⎞= +⎜ ⎟ ⎢ ⎥− + +⎝ ⎠ ⎣ ⎦
∑  (22) 

with 

              ( ) 1
( )
1( 1) ( 1) ( 1)( 2)i n

n n g
n

A n n n n n q
D

α +⎡ ⎤= − − − + +⎣ ⎦  (23) 

              ( )
( )
1( 1)( 2) ( 2) ( 1)e n

n n g
n

A n n n q n
D

α⎡ ⎤= + + + + −⎣ ⎦  (24) 

where             ( ) 2 2 2 1( 1) ( 1)( 2)g n
nD n n n n q += − + + +  

 
The coefficients ( )i

nA  and ( )e
nA  are illustrated by Figure 7 (right). 
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Figure 7. The coefficients ( )i

nA  and ( )e
nA  for 0.96228q =  and 

0.94099q =  ( 250e iR R km= +  and 400e iR R km= +  ) in case of 
(left) gravimetry and a satellite-only model and (right) gravimetry 
and gradiometry. 
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27.  Terrestrial Term and the Integral Kernel 
Recall that we obtained the following results (optimized solution):  
- 1st problem (gravimetry and a satellite-only model) 

1
( ) ( )

0 1

n
i ei i

n n n n
n

R Rf A g A t
r n

∆
+∞

=

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎣ ⎦
∑  

- 2nd problem (gravimetry and gradiometry) 
1 2

( ) ( )

0 1 ( 1)( 2)

n
i ei i e

n n n n
n

R R Rf A g A G
r n n n

∆
+∞

=

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟ − + +⎝ ⎠ ⎣ ⎦
∑  

Our aim is to sum the series  

                                
1

( )

0 1

n
ii i

terr n n
n

R Rf A g
r n

∆
+∞

=

⎛ ⎞= ⎜ ⎟ −⎝ ⎠
∑  

representing the  terrestrial term  for the respective  ( )i
nA  . 

 



 94

For the 1st problem, we get   
2 3

*
0 12 2

1 2 (1 ) ( , )
2(2 1) 46

i i i
terr

R R Rq q qf g g S r g d
r q r q σ

∆ ∆ ψ ∆ σ
π

− − +
= − ⋅ + ⋅ +

− ∫  

with 
1

* ( )

2

2 1( , ) (cos )
1

n
i i

n n
n

RnS r A P
n r

ψ ψ
+∞

=

+ ⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑  

While, for the 2nd problem we obtain 
2 3

*
0 12 2

1 1 ( , )
4 46

i i i
terr

R R Rq qf g g S r g d
r q r q σ

∆ ∆ ψ ∆ σ
π

+ +
= ⋅ − ⋅ + ∫  

where *( , )S r ψ  appears again, but with another coefficients ( )i
nA  . 

 
For ir R=  the following figures shows how the kernel *( , )S r ψ  
depends on the angle  ψ  .  
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Note that very similar results and figures can be obtained when 
using the gravity disturbance  gδ  . In this case we have 

1
( ) ( )

0 1

n
i ei i

n n n n
n

R Rf A g A t
r n

δ
+∞

=

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎣ ⎦
∑     with 

1
( ) ( 1)(1 )n
i n

n
n

n qA
D
α ++ −

=     and    ( ) ( 1)n
e n

n
n

n q nA
D
α+ +

=  

where                                2 11 (1 )n
nD n q += + +  

Smooth curve in the midle that does not oscillate!
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The term 
1
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n
ii i

terr n n
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R Rf A g
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δ
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may then be represented by 

*( , )
4

i
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Rf K r g d
σ

ψ δ σ
π

= ∫  

with 
1

* ( )

2

2 1( , ) (cos )
1

n
i i

n n
n

RnK r A P
n r

ψ ψ
+∞

=

+ ⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
∑  

 
 
Its dominant part (with respect to EGM2008) computed for data 
from the territory of the Czech Republic is plotted in the follow-
ing Figure 8. 
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Figure 8 

The composition  terr satf f f= +    ( where 
1

( )

0

n
ei

sat n n
n

Rf A t
r

+∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑  ) 

is then in  Figure 9 . 
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                                                                                       f  =  fterr +  fsat 
 

Figure 9. The composition terr satf f f= +  for 6378ir R km= =  
and  0.96228q =   ( i.e., 250e iR R km= +  ). 
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TThhaannkk  yyoouu    
ffoorr  yyoouurr  aatttteennttiioonn  !! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


