The boundary elements formulation of Molodensky's problem: new ideas from the old book of physical geodesy

F. Sansò

Scientific Colloquium at Leibnitz Academy
Berlin, November 152013

Helmut Moritz has been

 my teacher of Geodesy
This is the book where I studied and I continue ...

Physical Geodesy

WEIKKO A. HEISKANEN
HELMUT MORI'RZ

Reprint
Institute of Physical Geodesy Technical University Graz, Austria 1981

The scalar Molodensky problem is to find
$W(\mathbf{x})$ gravity potential
$S \equiv\left\{\mathbf{x}(\lambda, \varphi\}\right.$ Earth surface $\mathbf{x}(\lambda, \varphi)=\mathbf{x}_{e}(\lambda, \varphi)+h(\lambda, \varphi) \nu(\lambda, \varphi)$
from $\left.W(\lambda, \varphi) \equiv W\right|_{S},\left.g(\lambda, \varphi)|\nabla W|\right|_{S}$

The scalar Molodensky problem is to find

$$
\begin{aligned}
& T(\mathbf{x}) \text { anomalous potential } \\
& \zeta=\frac{T}{\gamma} \text { height anomaly }
\end{aligned}
$$

from the BVP formulated on a telluroid

$$
S \equiv\{U(\widetilde{h}) \equiv W(h)\}
$$

from the solution of the oblique derivative BVP

$$
\left\{\begin{array}{l}
\Delta T=0 \\
\left.\left(-\frac{\partial T}{\partial h}-\frac{\frac{\partial \gamma}{\partial h}}{\gamma} T\right)\right|_{S}=\Delta g
\end{array}\right.
$$

(we ignore here the asymptotic conditions, since we watn to go to a simple planar approximation)

The planar Molodensky problem in planar approximation is to find $T(\mathbf{x})$ such that

Notice the use of the notation

$$
\begin{aligned}
& \xi=\left|\begin{array}{l}
x \\
y
\end{array}\right| \\
& \nabla_{0} T=\mathbf{e}_{x} \frac{\partial T}{\partial X}+\mathbf{e}_{y} \frac{\partial}{\partial y} T=\nabla_{\xi} T \\
& T^{\prime}=\frac{\partial T}{\partial Z}
\end{aligned}
$$

The third Green identity - or better its limit when $z \rightarrow H(\xi)$.

$$
T(\xi, H(\xi))=\frac{1}{2 \pi} \int_{S}\left\{T(\eta, H(\eta)) \frac{\partial}{\partial n_{\eta}} \frac{1}{\ell_{\xi \eta}}-\frac{\partial T}{\partial n_{\eta}}(\eta, H(\eta)) \frac{1}{\ell_{\xi \eta}}\right\} d S_{\eta}
$$

Note

$$
\begin{gathered}
\ell_{\xi \eta}=\left[|\xi-\eta|^{2}+(H(\xi)-H(\eta))^{2}\right]^{\frac{1}{2}} \\
\frac{\partial T(\eta, H)}{\partial n_{\eta}}=\mathbf{n}_{\eta} \cdot\left(\nabla_{0} T+\mathbf{e}_{z} T^{\prime}\right)(\eta, H(\eta))
\end{gathered}
$$

first the 3D gradient, then the trace on S !

$$
\frac{\partial}{\partial n_{\eta}} \frac{1}{\ell_{\xi, \eta}}=\mathbf{n}_{\eta} \cdot \frac{(\xi-\eta)+(H(\xi)-H(\eta)) \mathbf{e}_{z}}{\ell_{\xi \eta}^{3}}
$$

Important: if we introduce the trace and the Neumann operators
$\Gamma_{z}\{T(\mathbf{x})\} \equiv \Gamma_{z}\{T(\xi, x)\}=T(\xi, H(\xi)) ; N_{\xi, z}\{T(\mathbf{x})\} \equiv N_{\xi, z}\{T(\xi, z\}=\mathbf{n}(\xi) \cdot \nabla T(\xi, z)$ noting that

$$
\ell_{\mathbf{x}, \mathbf{y}}=\ell\left(\xi, z ; \eta, z^{\prime}\right)=\left[|\xi-\eta|^{2}+\left(z-z^{\prime}\right)^{2}\right]^{\frac{1}{2}}
$$

we can write the third Green identity more precisely as

$$
\begin{aligned}
& \Gamma_{z}(T(\xi, z))=\frac{1}{2 \pi} \int_{S}\left\{\Gamma _ { z ^ { \prime } } \left(T\left(\eta, z^{\prime}\right) \Gamma_{z^{\prime}}\left[N_{\eta, z^{\prime}}\left(\ell_{\mathbf{x}, \mathbf{y}}^{-1}\right)\right]+\right.\right. \\
& -\Gamma_{z^{\prime}}\left[N_{\eta, z^{\prime}}\left(T\left(\eta, z^{\prime}\right)\right] \Gamma_{z^{\prime}}\left(\ell_{\mathbf{x}, \mathbf{y}}^{-1}\right\} d S_{y}\right.
\end{aligned}
$$

Boundary elements: notice that when

$$
-\Gamma_{z^{\prime}} N_{\eta, z^{\prime}}\left(T\left(\eta, z^{\prime}\right) \equiv-T_{n}(\eta, H(\eta))=g(\eta)\right.
$$

is known one can compute

$$
h(\xi)=-\frac{1}{2 \pi} \int g(\eta) \Gamma_{z} \Gamma_{z^{\prime}}\left(\ell_{\mathbf{x}, \mathbf{y}}^{-1}\right) d S_{\eta}
$$

and the third Green identity becomes the integral equation

$$
\begin{aligned}
& f(\xi)=\frac{1}{2 \pi} \int f(\eta) \frac{\mathbf{n}(\eta) \cdot(\mathbf{x}-\mathbf{y})}{\ell_{\mathbf{x}, \mathbf{y}}^{3}} d S_{\eta}=h(\xi) \\
& f(\xi)=T(\xi, H(\xi))
\end{aligned}
$$

the solution of which gives directly T on S.

Can we write the B.E. integral equation for the Molodensky problem?

Yes but we need several steps and caution

- Put as before

$$
\begin{aligned}
& f(\xi)=T(\xi, H(\xi))=\Gamma_{z}(T) \\
& -\Delta g(\xi)=-T^{\prime}(\xi, H(\xi))=-\Gamma_{z}\left(T^{\prime}\right)
\end{aligned}
$$

- define

$$
\mathbf{v}(\xi)=\nabla_{0} H(\xi)
$$

- note that

$$
\nabla_{0} \Gamma(T) \equiv \nabla_{0} f=\Gamma \nabla_{0}(T)+\Gamma\left(T^{\prime}\right) \nabla_{0} H
$$

so that

$$
\Gamma \nabla_{0}(T)=\nabla_{0} f+\Delta g \mathbf{v}
$$

- moreover we have the following geometric identities

$$
\begin{aligned}
& \mathbf{n}=\cos I=\left(-\mathbf{v}+\mathbf{e}_{z}\right) \\
& \cos I=\left[|\mathbf{v}|^{2}+1\right]^{-\frac{1}{2}} ; \operatorname{tg} I=|\mathbf{v}| \\
& \cos I d S_{\eta}=d S_{0}=\text { area element in the horizontal plane }
\end{aligned}
$$

$$
\begin{aligned}
\Gamma N(T) & =\Gamma\left[\left(-\mathbf{v}+\mathbf{e}_{z}\right) \cdot\left(\nabla_{0} T+T^{\prime} \mathbf{e}_{z}\right)\right] \cos I= \\
& =\left[-\mathbf{v} \cdot \Gamma \nabla_{0} T-\Delta g\right] \cos I= \\
& =\left[-\mathbf{v} \cdot \nabla_{0} f-\Delta g|\mathbf{v}|^{2}-\Delta g\right] \cos I= \\
& =\left[-\mathbf{v} \cdot \nabla_{0} f-\left(1+\operatorname{tg}^{2} I\right) \Delta g\right] \cos I
\end{aligned}
$$

$$
\begin{aligned}
& -\int \Gamma_{z^{\prime}}[N(T)] \Gamma_{z} \Gamma_{z^{\prime}} \ell_{\mathbf{x}, \boldsymbol{y}}^{-1} d S_{\eta}=\int \mathbf{v}(\eta) \cdot \nabla_{0} f(\eta) \ell_{\xi, \eta}^{-1} d S_{0}+ \\
& +\int\left(I+\operatorname{tg}^{2} I\right) \Delta g(\eta) \ell_{\xi, \eta}^{-1} d S_{0} \equiv \int \mathbf{v}(\eta) \cdot \nabla_{0} f(\eta) \ell_{\xi, \eta}^{-1} d S_{0}+h(\xi)
\end{aligned}
$$

- crucial step is the integration by parts

$$
\begin{aligned}
& \int \mathbf{v}(\xi) \cdot \nabla_{0} f(\xi) \ell_{\xi, \eta}^{-1} d S_{0}=-\int \nabla_{0} \cdot \mathbf{v}(\eta) f(\eta) \ell_{\xi, \eta}^{-1} d S_{0}+ \\
& -\int \mathbf{v}(\eta) \cdot \frac{(\xi-\eta)+(H(\xi)-H(\eta)) \mathbf{v}(\eta)}{\ell_{\xi \eta}^{3}} f(\eta) d S_{0}=\left(\nabla_{0} \cdot \mathbf{v}(\eta)=\Delta_{0} H(\eta)\right) \\
& -\int \frac{\Delta_{0} H(\eta) f(\eta)}{\ell_{\xi, \eta}} d S_{0}-\int \frac{\mathbf{v}(\eta) \cdot(\xi-\eta)+(H(\xi)-H(\eta))|\mathbf{v}(\eta)|^{2}}{\ell_{\xi \eta}^{3}} f(\eta) d S_{0}
\end{aligned}
$$

Singular integral: compute in Cauchy principal part

- Similarly

$$
\begin{aligned}
\Gamma_{z} \Gamma_{z^{\prime}}\left\{N_{\eta, z^{\prime}}\left(\ell_{\mathbf{x}, \mathbf{y}}^{-1}\right)\right\} & =\Gamma_{z} \Gamma_{z^{\prime}}\left\{\mathbf{n}(\eta) \cdot \frac{(\xi-\eta)+\left(z-z^{\prime}\right) \mathbf{e}_{z}}{\ell_{\mathbf{x}, \mathbf{y}}^{3}}\right\}= \\
& =\left[\left(-\mathbf{v}(\eta)+\mathbf{e}_{z}\right) \cdot \frac{(\xi-\eta)+\left(H(\xi)-H(\eta) \mathbf{e}_{z}\right.}{\ell_{\xi, \eta}^{3}}\right] \cos I \\
& =\frac{-\mathbf{v}(\eta) \cdot(\xi-\eta)+(H(\xi)-H(\eta))}{\ell_{\xi, \eta}^{3}} \cos I
\end{aligned}
$$

so that

$$
\int f(\eta) \Gamma_{z} \Gamma_{z^{\prime}}\left[N\left(\ell_{\mathbf{x}, \mathbf{y}}^{-1}\right)\right] d S_{y}=\int f(\eta) \frac{-\mathbf{v}(\eta) \cdot(\xi-\eta)+(H(\xi)-H(\eta))}{\ell_{\xi, \eta}^{3}} d S_{0}
$$

- Summarizing

$$
\begin{aligned}
& 2 \pi f(\xi)=h(\xi)-\int \frac{\Delta H(\eta) f(\eta)}{\ell_{\xi, \eta}} d S_{0}+ \\
& +\int f(\eta) \frac{-2 \mathbf{v}(\eta) \cdot(\xi-\eta)+(H(\xi)-H(\eta))\left(I-|\nu(\eta)|^{2}\right)}{\ell_{\xi, \eta}^{3}} d S_{0}
\end{aligned}
$$

This is the Boundary Element equation for Molodensky's problem: it is a singular integral equation, as unavoidable for an oblique derivative problem.

A last comment

Since Fredholm alternative holds, the uniqueness of the solution is particularly important.

This can be achieved directly by the Cartesian version of the energy integral.

From

$$
\begin{aligned}
\nabla \cdot\left(T^{\prime} \nabla T\right) & =\frac{\partial}{\partial z} \nabla T \cdot \nabla T= \\
& =\frac{1}{2} \frac{\partial}{\partial z}|\nabla T|^{2}
\end{aligned}
$$

one has

$$
-\int_{S} T^{\prime} T_{n} d S=\int d S_{0} \int_{H(\xi)}^{+\infty} d z \frac{1}{2} \frac{\partial}{\partial z}|\nabla T|^{2}=-\frac{1}{2} \int d S_{0}|\nabla T|_{S}^{2}
$$

So, putting $J=(\cos I)^{-1}$ and $J_{+}=\max _{S}(\cos I)^{-1}$,

$$
\begin{aligned}
& \int d S_{0}|\nabla T|_{S}^{2}=2 \int T^{\prime} T_{n} J d S_{0} \leq 2 J_{+}\left[\int \Delta g^{2} d S_{0}\right]^{\frac{1}{2}}\left[\int\left|T_{n}\right|^{2} d S_{0}\right]^{\frac{1}{2}} \leq \\
& \leq 2 J_{+}\left[\int \Delta g^{2} d S_{0}\right]^{\frac{1}{2}}\left[\int|\nabla T|_{S}^{2} d S_{0}\right]
\end{aligned}
$$

Simplyfing we get

$$
\left[\int d S_{0}|\nabla T|_{S}^{2}\right]^{\frac{1}{2}} \leq 2 J_{2}\left[\int \Delta g^{2} d S_{0}\right]^{\frac{1}{2}}
$$

that guarantees uniqueness and stability of the solution!

